Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Cell Physiol ; 326(5): C1334-C1344, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38557356

ABSTRACT

Cardiac maturation represents the last phase of heart development and is characterized by morphofunctional alterations that optimize the heart for efficient pumping. Its understanding provides important insights into cardiac regeneration therapies. Recent evidence implies that adrenergic signals are involved in the regulation of cardiac maturation, but the mechanistic underpinnings involved in this process are poorly understood. Herein, we explored the role of ß-adrenergic receptor (ß-AR) activation in determining structural and functional components of cardiomyocyte maturation. Temporal characterization of tyrosine hydroxylase and norepinephrine levels in the mouse heart revealed that sympathetic innervation develops during the first 3 wk of life, concurrent with the rise in ß-AR expression. To assess the impact of adrenergic inhibition on maturation, we treated mice with propranolol, isolated cardiomyocytes, and evaluated morphofunctional parameters. Propranolol treatment reduced heart weight, cardiomyocyte size, and cellular shortening, while it increased the pool of mononucleated myocytes, resulting in impaired maturation. No changes in t-tubules were observed in cells from propranolol mice. To establish a causal link between ß-AR signaling and cardiomyocyte maturation, mice were subjected to sympathectomy, followed or not by restoration with isoproterenol treatment. Cardiomyocytes from sympathectomyzed mice recapitulated the salient immaturity features of propranolol-treated mice, with the additional loss of t-tubules. Isoproterenol rescued the maturation deficits induced by sympathectomy, except for the t-tubule alterations. Our study identifies the ß-AR stimuli as a maturation promoting signal and implies that this pathway can be modulated to improve cardiac regeneration therapies.NEW & NOTEWORTHY Maturation involves a series of morphofunctional alterations vital to heart development. Its regulatory mechanisms are only now being unveiled. Evidence implies that adrenergic signaling regulates cardiac maturation, but the mechanisms are poorly understood. To address this point, we blocked ß-ARs or performed sympathectomy followed by rescue experiments with isoproterenol in neonatal mice. Our study identifies the ß-AR stimuli as a maturation signal for cardiomyocytes and highlights the importance of this pathway in cardiac regeneration therapies.


Subject(s)
Myocytes, Cardiac , Propranolol , Signal Transduction , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Mice , Propranolol/pharmacology , Receptors, Adrenergic, beta/metabolism , Mice, Inbred C57BL , Isoproterenol/pharmacology , Male , Heart/drug effects , Cells, Cultured , Adrenergic beta-Agonists/pharmacology , Norepinephrine/metabolism , Norepinephrine/pharmacology , Adrenergic beta-Antagonists/pharmacology
2.
Am J Physiol Heart Circ Physiol ; 320(1): H352-H363, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33124885

ABSTRACT

Alamandine is the newest identified peptide of the renin-angiotensin system (RAS) and has protective effects in the cardiovascular system. Although the involvement of classical RAS components in the genesis and progression of cardiac remodeling is well known, less is known about the effects of alamandine. Therefore, in the present study we investigated the effects of alamandine on cardiac remodeling induced by transverse aortic constriction (TAC) in mice. Male mice (C57BL/6), 10-12 wk of age, were divided into three groups: sham operated, TAC, and TAC + ALA (30 µg/kg/day alamandine for 14 days). The TAC surgery was performed under ketamine and xylazine anesthesia. At the end of treatment, the animals were submitted to echocardiographic examination and subsequently euthanized for tissue collection. TAC induced myocyte hypertrophy, collagen deposition, and the expression of matrix metalloproteinase (MMP)-2 and transforming growth factor (TGF)-ß in the left ventricle. These markers of cardiac remodeling were reduced by oral treatment with alamandine. Western blotting analysis showed that alamandine prevents the increase in ERK1/2 phosphorylation and reverts the decrease in 5'-adenosine monophosphate-activated protein kinase (AMPK)α phosphorylation induced by TAC. Although both TAC and TAC + ALA increased SERCA2 expression, the phosphorylation of phospholamban in the Thr17 residue was increased solely in the alamandine-treated group. The echocardiographic data showed that there are no functional or morphological alterations after 2 wk of TAC. Alamandine treatment prevents myocyte hypertrophy and cardiac fibrosis induced by TAC. Our results reinforce the cardioprotective role of alamandine and highlight its therapeutic potential for treating heart diseases related to pressure overload conditions.NEW & NOTEWORTHY Alamandine is the newest identified component of the renin-angiotensin system protective arm. Considering the beneficial effects already described so far, alamandine is a promising target for cardiovascular disease treatment. We demonstrated for the first time that alamandine improves many aspects of cardiac remodeling induced by pressure overload, including cell hypertrophy, fibrosis, and oxidative stress markers.


Subject(s)
Cardiovascular Agents/pharmacology , Heart Ventricles/drug effects , Hypertrophy, Left Ventricular/prevention & control , Oligopeptides/pharmacology , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects , AMP-Activated Protein Kinases/metabolism , Animals , Aorta/physiopathology , Aorta/surgery , Calcium-Binding Proteins/metabolism , Collagen/metabolism , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/physiopathology , Ligation , Male , Matrix Metalloproteinase 2/metabolism , Mice, Inbred C57BL , Oxidative Stress/drug effects , Phosphorylation , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...