Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
EJNMMI Phys ; 4(1): 9, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28144857

ABSTRACT

BACKGROUND: Our aim was to evaluate if a recently introduced TOF PET system with digital photon counting technology (Philips Healthcare), potentially providing an improved image quality over analogue systems, can fulfil EANM research Ltd (EARL) accreditation specifications for tumour imaging with FDG-PET/CT. FINDINGS: We have performed a phantom study on a digital TOF PET system using a NEMA NU2-2001 image quality phantom with six fillable spheres. Phantom preparation and PET/CT acquisition were performed according to the European Association of Nuclear Medicine (EANM) guidelines. We made list-mode ordered-subsets expectation maximization (OSEM) TOF PET reconstructions, with default settings, three voxel sizes (4 × 4 × 4 mm3, 2 × 2 × 2 mm3 and 1 × 1 × 1 mm3) and with/without point spread function (PSF) modelling. On each PET dataset, mean and maximum activity concentration recovery coefficients (RCmean and RCmax) were calculated for all phantom spheres and compared to EARL accreditation specifications. The RCs of the 4 × 4 × 4 mm3 voxel dataset without PSF modelling proved closest to EARL specifications. Next, we added a Gaussian post-smoothing filter with varying kernel widths of 1-7 mm. EARL specifications were fulfilled when using kernel widths of 2 to 4 mm. CONCLUSIONS: TOF PET using digital photon counting technology fulfils EARL accreditation specifications for FDG-PET/CT tumour imaging when using an OSEM reconstruction with 4 × 4 × 4 mm3 voxels, no PSF modelling and including a Gaussian post-smoothing filter of 2 to 4 mm.

SELECTION OF CITATIONS
SEARCH DETAIL
...