Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 789: 147725, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34052494

ABSTRACT

There is growing evidence that traditional response to floods and flood-related disaster is no longer achieving desirable results. Nature-Based Solutions (NBS) represent a relatively new response towards disaster risk reduction, water security, and resilience to climate change, which has a potential to be more effective and sustainable than traditional measures. However, in practice, these measures are still being applied at a slow rate while traditional grey infrastructure remains as a preferred choice. This can be attributed to several barriers which range from political and governance to social and technological/technical. More generally, there is a lack of sufficient knowledge base to accelerate their wider acceptance and uptake. The present work provides contribution in this direction and addresses the question of effectiveness of different types of NBS (i.e., small- and large-scale NBS) and their hybrid combinations with grey infrastructure. The work has been applied on the case of Ayutthaya, Thailand. The results suggest that the effectiveness of small-scale NBS is limited to smaller rainfall events whereas the larger (or extreme) events necessitate combinations of different kinds of measures with different scales of implementation (i.e., hybrid measures).


Subject(s)
Disasters , Floods , Climate Change , Thailand
2.
Sci Total Environ ; 703: 134980, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31757541

ABSTRACT

Climate change is presenting one of the main challenges to our planet. In parallel, all regions of the world are projected to urbanise further. Consequently, sustainable development challenges will be increasingly concentrated in cities. A resulting impact is the increment of expected urban flood risk in many areas around the globe. Adaptation to climate change is an opportunity to improve urban conditions through the implementation of green-blue infrastructures, which provide multiple benefits besides flood mitigation. However, this is not an easy task since urban drainage systems are complex structures. This work focuses on a method to analyse the trade-offs when different benefits are pursued in stormwater infrastructure planning. A hydrodynamic model was coupled with an evolutionary optimisation algorithm to evaluate different green-blue-grey measures combinations. This evaluation includes flood mitigation as well as the enhancement of co-benefits. We confirmed optimisation as a helpful decision-making tool to visualise trade-offs among flood management strategies. Our results show that considering co-benefits enhancement as an objective boosts the selection of green-blue infrastructure. However, flood mitigation effectiveness can be diminished when extra benefits are pursued. Finally, we proved that combining green-blue-grey measures is particularly important in urban spaces when several benefits are considered simultaneously.

3.
J Environ Manage ; 248: 109317, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31394474

ABSTRACT

Disaster risk reduction is a major concern of small island developing states. Measures to reduce risk should not only be based on the magnitude of physical hazard, but also on the exposure and vulnerability of communities. In this article, we examine flood risk management policies in the Caribbean island of Sint Maarten using coupled agent-based and flood models. The agent-based model is used to model actors' behaviour in relation to urban building development and policies that are designed to reduce flood hazard and communities' vulnerability and exposure. The policies considered in the model are a Beach Policy, a Building and Housing Ordinance, a Flood Zoning policy and hazard mitigation structural measures. The flood model is used to simulate coastal and pluvial floods on the island. Agent behaviour such as building new houses and implementing hazard reduction measures affect the flood model as these actions affect the rainfall-runoff process. The flood maps generated from the updated flood model simulations are then used to assess the impact and update agents' attributes and behaviour. The simulations results show that low-lying areas are populated, which increases the exposure, and the number of vulnerable houses is also high. Hence, out of the four policies, implementing hazard reduction measures is the most important. Reducing the flood hazard by widening existing drainage channels, constructing new ones and building dykes as coastal flood defence would reduce the hazard, hence reducing the number of flooded houses. As it affects all households on the island, the Building and Housing Ordinance is an important policy to reduce vulnerability. In general, the coupled model outputs can be used to inform policy decision making and provide insights to policymakers on the island.


Subject(s)
Disasters , Floods , City Planning , Risk Management , Sint Maarten
4.
J Environ Manage ; 239: 244-254, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30903836

ABSTRACT

Green-blue infrastructures in urban spaces offer several co-benefits besides flood risk reduction, such as water savings, energy savings due to less cooling usage, air quality improvement and carbon sequestration. Traditionally, these co-benefits were not included in decision making processes for flood risk management. In this work we present a method to include the monetary analysis of these co-benefits into a cost-benefits analysis of flood risk mitigation measures. This approach was applied to a case study, comparing costs and benefits with and without co-benefits. Different intervention strategies were considered, using green, blue and grey measures and combinations of them. The results obtained illustrate the importance of assessing co-benefits when identifying best adaptation strategies to improve urban flood risk management. Otherwise green infrastructure is likely to appear less efficient than more conventional grey infrastructure. Moreover, a mix of green, blue and grey infrastructures is likely to result in the best adaptation strategy as these three alternatives tend to complement each other. Grey infrastructure has good performance at reducing the risk of flooding, whilst green infrastructure brings in multiple additional benefits that grey infrastructure cannot offer.


Subject(s)
Floods , Risk Management , Color , Cost-Benefit Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...