Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(12): e2312820121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38478689

ABSTRACT

Meiotic recombination shows broad variations across species and along chromosomes and is often suppressed at and around genomic regions determining sexual compatibility such as mating type loci in fungi. Here, we show that the absence of Spo11-DSBs and meiotic recombination on Lakl0C-left, the chromosome arm containing the sex locus of the Lachancea kluyveri budding yeast, results from the absence of recruitment of the two chromosome axis proteins Red1 and Hop1, essential for proper Spo11-DSBs formation. Furthermore, cytological observation of spread pachytene meiotic chromosomes reveals that Lakl0C-left does not undergo synapsis. However, we show that the behavior of Lakl0C-left is independent of its particularly early replication timing and is not accompanied by any peculiar chromosome structure as detectable by Hi-C in this yet poorly studied yeast. Finally, we observed an accumulation of heterozygous mutations on Lakl0C-left and a sexual dimorphism of the haploid meiotic offspring, supporting a direct effect of this absence of meiotic recombination on L. kluyveri genome evolution and fitness. Because suppression of meiotic recombination on sex chromosomes is widely observed across eukaryotes, the mechanism for recombination suppression described here may apply to other species, with the potential to impact sex chromosome evolution.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomycetales , Chromosomes/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Homologous Recombination/genetics , Meiosis/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
2.
EMBO J ; 42(3): e111998, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36541070

ABSTRACT

The Werner Syndrome helicase, WRN, is a promising therapeutic target in cancers with microsatellite instability (MSI). Long-term MSI leads to the expansion of TA nucleotide repeats proposed to form cruciform DNA structures, which in turn cause DNA breaks and cell lethality upon WRN downregulation. Here we employed biochemical assays to show that WRN helicase can efficiently and directly unfold cruciform structures, thereby preventing their cleavage by the SLX1-SLX4 structure-specific endonuclease. TA repeats are particularly prone to form cruciform structures, explaining why these DNA sequences are preferentially broken in MSI cells upon WRN downregulation. We further demonstrate that the activity of the DNA mismatch repair (MMR) complexes MutSα (MSH2-MSH6), MutSß (MSH2-MSH3), and MutLα (MLH1-PMS2) similarly decreases the level of DNA cruciforms, although the mechanism is different from that employed by WRN. When combined, WRN and MutLα exhibited higher than additive effects in in vitro cruciform processing, suggesting that WRN and the MMR proteins may cooperate. Our data explain how WRN and MMR defects cause genome instability in MSI cells with expanded TA repeats, and provide a mechanistic basis for their recently discovered synthetic-lethal interaction with promising applications in precision cancer therapy.


Subject(s)
DNA Mismatch Repair , DNA, Cruciform , Humans , MutS Homolog 2 Protein/genetics , MutS Homolog 2 Protein/metabolism , Microsatellite Instability , Werner Syndrome Helicase/genetics , Werner Syndrome Helicase/metabolism , MutL Protein Homolog 1/genetics
3.
Mol Cell ; 82(19): 3553-3565.e5, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36070766

ABSTRACT

RAD51 and the breast cancer suppressor BRCA2 have critical functions in DNA double-strand (dsDNA) break repair by homologous recombination and the protection of newly replicated DNA from nucleolytic degradation. The recombination function of RAD51 requires its binding to single-stranded DNA (ssDNA), whereas binding to dsDNA is inhibitory. Using reconstituted MRE11-, EXO1-, and DNA2-dependent nuclease reactions, we show that the protective function of RAD51 unexpectedly depends on its binding to dsDNA. The BRC4 repeat of BRCA2 abrogates RAD51 binding to dsDNA and accordingly impairs the function of RAD51 in protection. The BRCA2 C-terminal RAD51-binding segment (TR2) acts in a dominant manner to overcome the effect of BRC4. Mechanistically, TR2 stabilizes RAD51 binding to dsDNA, even in the presence of BRC4, promoting DNA protection. Our data suggest that RAD51's dsDNA-binding capacity may have evolved together with its function in replication fork protection and provide a mechanistic basis for the DNA-protection function of BRCA2.


Subject(s)
DNA, Single-Stranded , Rad51 Recombinase , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , DNA/genetics , DNA Breaks, Double-Stranded , DNA Repair , DNA Replication , DNA, Single-Stranded/genetics , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism
4.
Curr Opin Genet Dev ; 71: 39-47, 2021 12.
Article in English | MEDLINE | ID: mdl-34293660

ABSTRACT

DNA breaks may arise accidentally in vegetative cells or in a programmed manner in meiosis. The usage of a DNA template makes homologous recombination potentially error-free, however, recombination is not always accurate. Cells possess a remarkable capacity to tailor processing of recombination intermediates to fulfill a particular need. Vegetatively growing cells aim to maintain genome stability and therefore repair accidental breaks largely accurately, using sister chromatids as templates, into mostly non-crossovers products. Recombination in meiotic cells is instead more likely to employ homologous chromosomes as templates and result in crossovers to allow proper chromosome segregation and promote genetic diversity. Here we review models explaining the processing of recombination intermediates in vegetative and meiotic cells and its regulation, with a focus on MLH1-MLH3-dependent crossing-over during meiotic recombination.


Subject(s)
DNA Breaks, Double-Stranded , Homologous Recombination , Chromatids , Chromosome Segregation/genetics , DNA Repair/genetics , Homologous Recombination/genetics , Meiosis/genetics
5.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34088835

ABSTRACT

In budding yeast, the MutL homolog heterodimer Mlh1-Mlh3 (MutLγ) plays a central role in the formation of meiotic crossovers. It is also involved in the repair of a subset of mismatches besides the main mismatch repair (MMR) endonuclease Mlh1-Pms1 (MutLα). The heterodimer interface and endonuclease sites of MutLγ and MutLα are located in their C-terminal domain (CTD). The molecular basis of MutLγ's dual roles in MMR and meiosis is not known. To better understand the specificity of MutLγ, we characterized the crystal structure of Saccharomyces cerevisiae MutLγ(CTD). Although MutLγ(CTD) presents overall similarities with MutLα(CTD), it harbors some rearrangement of the surface surrounding the active site, which indicates altered substrate preference. The last amino acids of Mlh1 participate in the Mlh3 endonuclease site as previously reported for Pms1. We characterized mlh1 alleles and showed a critical role of this Mlh1 extreme C terminus both in MMR and in meiotic recombination. We showed that the MutLγ(CTD) preferentially binds Holliday junctions, contrary to MutLα(CTD). We characterized Mlh3 positions on the N-terminal domain (NTD) and CTD that could contribute to the positioning of the NTD close to the CTD in the context of the full-length MutLγ. Finally, crystal packing revealed an assembly of MutLγ(CTD) molecules in filament structures. Mutation at the corresponding interfaces reduced crossover formation, suggesting that these superstructures may contribute to the oligomer formation proposed for MutLγ. This study defines clear divergent features between the MutL homologs and identifies, at the molecular level, their specialization toward MMR or meiotic recombination functions.


Subject(s)
DNA Mismatch Repair/physiology , Endonucleases/metabolism , MutL Protein Homolog 1/metabolism , MutL Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Binding Sites , DNA Repair , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Endonucleases/chemistry , Meiosis , Models, Molecular , MutL Protein Homolog 1/chemistry , MutL Protein Homolog 1/genetics , MutL Proteins/chemistry , MutL Proteins/genetics , Recombinational DNA Repair , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
7.
Methods Mol Biol ; 2153: 295-306, 2021.
Article in English | MEDLINE | ID: mdl-32840788

ABSTRACT

Meiotic recombination is triggered by programmed DNA double-strand breaks (DSBs), catalyzed by the type II topoisomerase-like Spo11 protein. Meiotic DSBs are repaired by homologous recombination, which produces either crossovers or noncrossovers, this decision being linked to the binding of proteins specific of each pathway. Mapping the binding of these proteins along chromosomes in wild type or mutant yeast background is extremely useful to understand how and at which step the decision to repair a DSB with a crossover is taken. It is now possible to obtain highly synchronous yeast meiotic populations, which, combined with appropriate negative controls, enable to detect by chromatin immunoprecipitation followed by sequencing (ChIP-Seq) the transient binding of diverse recombination proteins with high sensitivity and resolution.


Subject(s)
Chromosome Mapping/methods , Endodeoxyribonucleases/genetics , Saccharomyces cerevisiae/genetics , Chromatin Immunoprecipitation Sequencing , High-Throughput Nucleotide Sequencing , Meiosis , Mutation , Recombinational DNA Repair
8.
Proc Natl Acad Sci U S A ; 117(48): 30577-30588, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33199619

ABSTRACT

Crossovers generated during the repair of programmed meiotic double-strand breaks must be tightly regulated to promote accurate homolog segregation without deleterious outcomes, such as aneuploidy. The Mlh1-Mlh3 (MutLγ) endonuclease complex is critical for crossover resolution, which involves mechanistically unclear interplay between MutLγ and Exo1 and polo kinase Cdc5. Using budding yeast to gain temporal and genetic traction on crossover regulation, we find that MutLγ constitutively interacts with Exo1. Upon commitment to crossover repair, MutLγ-Exo1 associate with recombination intermediates, followed by direct Cdc5 recruitment that triggers MutLγ crossover activity. We propose that Exo1 serves as a central coordinator in this molecular interplay, providing a defined order of interaction that prevents deleterious, premature activation of crossovers. MutLγ associates at a lower frequency near centromeres, indicating that spatial regulation across chromosomal regions reduces risky crossover events. Our data elucidate the temporal and spatial control surrounding a constitutive, potentially harmful, nuclease. We also reveal a critical, noncatalytic role for Exo1, through noncanonical interaction with polo kinase. These mechanisms regulating meiotic crossovers may be conserved across species.


Subject(s)
Cell Cycle Proteins/metabolism , Crossing Over, Genetic , Exodeoxyribonucleases/metabolism , Meiosis/genetics , MutL Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Cell Cycle Proteins/genetics , Chromosomes, Fungal , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Models, Biological , Models, Molecular , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Recombination, Genetic
9.
Nature ; 586(7830): 618-622, 2020 10.
Article in English | MEDLINE | ID: mdl-32814904

ABSTRACT

During prophase of the first meiotic division, cells deliberately break their DNA1. These DNA breaks are repaired by homologous recombination, which facilitates proper chromosome segregation and enables the reciprocal exchange of DNA segments between homologous chromosomes2. A pathway that depends on the MLH1-MLH3 (MutLγ) nuclease has been implicated in the biased processing of meiotic recombination intermediates into crossovers by an unknown mechanism3-7. Here we have biochemically reconstituted key elements of this pro-crossover pathway. We show that human MSH4-MSH5 (MutSγ), which supports crossing over8, binds branched recombination intermediates and associates with MutLγ, stabilizing the ensemble at joint molecule structures and adjacent double-stranded DNA. MutSγ directly stimulates DNA cleavage by the MutLγ endonuclease. MutLγ activity is further stimulated by EXO1, but only when MutSγ is present. Replication factor C (RFC) and the proliferating cell nuclear antigen (PCNA) are additional components of the nuclease ensemble, thereby triggering crossing-over. Saccharomyces cerevisiae strains in which MutLγ cannot interact with PCNA present defects in forming crossovers. Finally, the MutLγ-MutSγ-EXO1-RFC-PCNA nuclease ensemble preferentially cleaves DNA with Holliday junctions, but shows no canonical resolvase activity. Instead, it probably processes meiotic recombination intermediates by nicking double-stranded DNA adjacent to the junction points9. As DNA nicking by MutLγ depends on its co-factors, the asymmetric distribution of MutSγ and RFC-PCNA on meiotic recombination intermediates may drive biased DNA cleavage. This mode of MutLγ nuclease activation might explain crossover-specific processing of Holliday junctions or their precursors in meiotic chromosomes4.


Subject(s)
Crossing Over, Genetic , Endonucleases/metabolism , Meiosis , MutL Protein Homolog 1/metabolism , MutL Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Cell Cycle Proteins/metabolism , Chromosomes, Human/genetics , Conserved Sequence , DNA/metabolism , DNA Cleavage , DNA Repair Enzymes/metabolism , DNA, Cruciform/metabolism , Exodeoxyribonucleases/metabolism , Humans , MutL Protein Homolog 1/chemistry , MutL Proteins/chemistry , MutS Proteins/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Replication Protein C/metabolism
10.
Mol Syst Biol ; 14(11): e8516, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30446599

ABSTRACT

Chromosome and plasmid segregation in bacteria are mostly driven by ParABS systems. These DNA partitioning machineries rely on large nucleoprotein complexes assembled on centromere sites (parS). However, the mechanism of how a few parS-bound ParB proteins nucleate the formation of highly concentrated ParB clusters remains unclear despite several proposed physico-mathematical models. We discriminated between these different models by varying some key parameters in vivo using the F plasmid partition system. We found that "Nucleation & caging" is the only coherent model recapitulating in vivo data. We also showed that the stochastic self-assembly of partition complexes (i) is a robust mechanism, (ii) does not directly involve ParA ATPase, (iii) results in a dynamic structure of discrete size independent of ParB concentration, and (iv) is not perturbed by active transcription but is by protein complexes. We refined the "Nucleation & caging" model and successfully applied it to the chromosomally encoded Par system of Vibrio cholerae, indicating that this stochastic self-assembly mechanism is widely conserved from plasmids to chromosomes.


Subject(s)
Bacterial Proteins/metabolism , Chromosomes, Bacterial/physiology , Plasmids/physiology , Vibrio cholerae/metabolism , Chromosome Segregation , Chromosomes, Bacterial/genetics , Models, Theoretical , Plasmids/genetics , Stochastic Processes , Systems Biology/methods , Vibrio cholerae/physiology
11.
Methods Mol Biol ; 1624: 61-73, 2017.
Article in English | MEDLINE | ID: mdl-28842876

ABSTRACT

Chromatin immunoprecipitation (ChIP) coupled with next-generation sequencing (NGS) is widely used for studying the nucleoprotein components that are involved in the various cellular processes required for shaping the bacterial nucleoid. This methodology, termed ChIP-sequencing (ChIP-seq), enables the identification of the DNA targets of DNA binding proteins across genome-wide maps. Here, we describe the steps necessary to obtain short, specific, high-quality immunoprecipitated DNA prior to DNA library construction for NGS and high-resolution ChIP-seq data.


Subject(s)
Chromatin Immunoprecipitation/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Bacterial Proteins/metabolism , DNA/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Library , Nucleoproteins/metabolism
12.
PLoS Biol ; 14(2): e1002369, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26870961

ABSTRACT

Faithful meiotic chromosome segregation and fertility require meiotic recombination between homologous chromosomes rather than the equally available sister chromatid, a bias that in Saccharomyces cerevisiae depends on the meiotic kinase, Mek1. Mek1 is thought to mediate repair template bias by specifically suppressing sister-directed repair. Instead, we found that when Mek1 persists on closely paired (synapsed) homologues, DNA repair is severely delayed, suggesting that Mek1 suppresses any proximal repair template. Accordingly, Mek1 is excluded from synapsed homologues in wild-type cells. Exclusion requires the AAA+-ATPase Pch2 and is directly coupled to synaptonemal complex assembly. Stage-specific depletion experiments further demonstrate that DNA repair in the context of synapsed homologues requires Rad54, a repair factor inhibited by Mek1. These data indicate that the sister template is distinguished from the homologue primarily by its closer proximity to inhibitory Mek1 activity. We propose that once pairing or synapsis juxtaposes homologues, exclusion of Mek1 is necessary to avoid suppression of all templates and accelerate repair progression.


Subject(s)
Chromosome Pairing , DNA Repair , MAP Kinase Kinase 1/metabolism , DNA Breaks, Double-Stranded , DNA Helicases/metabolism , DNA Repair Enzymes/metabolism , Meiosis , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
13.
Cell Syst ; 1(2): 163-73, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-27135801

ABSTRACT

Many canonical processes in molecular biology rely on the dynamic assembly of higher-order nucleoprotein complexes. In bacteria, the assembly mechanism of ParABS, the nucleoprotein super-complex that actively segregates the bacterial chromosome and many plasmids, remains elusive. We combined super-resolution microscopy, quantitative genome-wide surveys, biochemistry, and mathematical modeling to investigate the assembly of ParB at the centromere-like sequences parS. We found that nearly all ParB molecules are actively confined around parS by a network of synergistic protein-protein and protein-DNA interactions. Interrogation of the empirically determined, high-resolution ParB genomic distribution with modeling suggests that instead of binding only to specific sequences and subsequently spreading, ParB binds stochastically around parS over long distances. We propose a new model for the formation of the ParABS partition complex based on nucleation and caging: ParB forms a dynamic lattice with the DNA around parS. This assembly model and approach to characterizing large-scale, dynamic interactions between macromolecules may be generalizable to many unrelated machineries that self-assemble in superstructures.

14.
Nucleic Acids Res ; 41(5): 3094-103, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23345617

ABSTRACT

ParB proteins are one of the three essential components of partition systems that actively segregate bacterial chromosomes and plasmids. In binding to centromere sequences, ParB assembles as nucleoprotein structures called partition complexes. These assemblies are the substrates for the partitioning process that ensures DNA molecules are segregated to both sides of the cell. We recently identified the sopC centromere nucleotides required for binding to the ParB homologue of plasmid F, SopB. This analysis also suggested a role in sopC binding for an arginine residue, R219, located outside the helix-turn-helix (HTH) DNA-binding motif previously shown to be the only determinant for sopC-specific binding. Here, we demonstrated that the R219 residue is critical for SopB binding to sopC during partition. Mutating R219 to alanine or lysine abolished partition by preventing partition complex assembly. Thus, specificity of SopB binding relies on two distinct motifs, an HTH and an arginine residue, which define a split DNA-binding domain larger than previously thought. Bioinformatic analysis over a broad range of chromosomal ParBs generalized our findings with the identification of a non-HTH positively charged residue essential for partition and centromere binding, present in a newly identified highly conserved motif. We propose that ParB proteins possess two DNA-binding motifs that form an extended centromere-binding domain, providing high specificity.


Subject(s)
Endodeoxyribonucleases/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Exodeoxyribonucleases/chemistry , Genome, Bacterial , Amino Acid Motifs , Amino Acid Sequence , Centromere/metabolism , Conserved Sequence , DNA Primase , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Electrophoretic Mobility Shift Assay , Endodeoxyribonucleases/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Exodeoxyribonucleases/metabolism , Molecular Sequence Data , Plasmids/genetics , Protein Binding , Protein Structure, Tertiary
15.
Biosens Bioelectron ; 43: 148-54, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23298626

ABSTRACT

Surface Plasmon Resonance imaging (SPRi) is a label free technique typically used to follow biomolecular interactions in real time. SPRi offers the possibility to simultaneously investigate numerous interactions and is dedicated to high throughput analysis. However, precise determination of binding constants between partners is not highly reliable. We report here a dendrimer functionalization of gold surface that significantly improves selectivity of the detection of protein-DNA interactions. We showed that amino-gold surface functionalization with phosphorus dendrimers of fourth generation (G4) allowed complete coverage of the gold surface and the increase of the surface roughness. We optimized the conditions for DNA probe deposition to allow accurate detection of a well-known protein-DNA interaction involved in bacterial chromosome segregation. Using this G4-functionalized surface, the specificity of the SPRi response was significantly improved allowing discrimination between protein and DNA interactions of different strengths. Kinetic constants similar to those obtained with other techniques currently used in molecular biology were only obtained with the G4 dendrimer functionalized surface. This study demonstrated the benefit of using dendrimeric surfaces for sensitive high throughput SPRi analysis.


Subject(s)
Biosensing Techniques/instrumentation , DNA-Binding Proteins/chemistry , DNA/chemistry , Dendrimers/chemistry , Gold/chemistry , Protein Interaction Mapping/instrumentation , Surface Plasmon Resonance/instrumentation , Equipment Design , Equipment Failure Analysis , Protein Binding , Surface Properties
16.
Nucleic Acids Res ; 39(17): 7477-86, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21653553

ABSTRACT

The segregation of plasmid F of Escherichia coli is highly reliable. The Sop partition locus, responsible for this stable maintenance, is composed of two genes, sopA and sopB and a centromere, sopC, consisting of 12 direct repeats of 43 bp. Each repeat carries a 16-bp inverted repeat motif to which SopB binds to form a nucleoprotein assembly called the partition complex. A database search for sequences closely related to sopC revealed unexpected features that appeared highly conserved. We have investigated the requirements for specific SopB-sopC interactions using a surface plasmon resonance imaging technique. We show that (i) only 10 repeats interact specifically with SopB, (ii) no base outside the 16-bp sopC sites is involved in binding specificity, whereas five bases present in each arm are required for interactions, and (iii) the A-C central bases contribute to binding efficiency by conforming to a need for a purine-pyrimidine dinucleotide. We have refined the SopB-sopC binding pattern by electro-mobility shift assay and found that all 16 bp are necessary for optimal SopB binding. These data and the model we propose, define the basis of the high binding specificity of F partition complex assembly, without which, dispersal of SopB over DNA would result in defective segregation.


Subject(s)
Centromere/chemistry , DNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , F Factor/genetics , Base Pairing , Base Sequence , Binding Sites , Centromere/metabolism , Conserved Sequence , DNA-Binding Proteins/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Inverted Repeat Sequences , Models, Chemical , Molecular Sequence Data , Protein Binding , Repetitive Sequences, Nucleic Acid , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...