Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 12(4)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37106820

ABSTRACT

Some of the species of the genus Bacopa have been used in Pharmacopoeia worldwide. However, in Mexico, Bacopa monnieri has neither been extensively cultivated nor studied, nor has their use in traditional medicine been reported. The aim of this work was to assess the taxonomic verification of the four wild populations of B. monnieri, the chemical content of their pigments and phenols and to provide an analysis of their potential bioactivity. B. monnieri wild populations from Mexico were validated using molecular markers. Chromatographic profiling using HPLC-PDA revealed 21 compounds comprising 12 chlorophylls and nine carotenoids; of the latter, the major ones were lutein (0.921 ± 0.031 µg/mg of dry extract) and ß-carotene (0.095 ± 0.003 µg/mg of dry extract). The total phenolic content, determined using the Folin-Ciocalteu assay, ranged from 54.8 ± 5.8 to 70.3 ± 2.2 µg of gallic acid equivalents (GAE)/mg. Plant extracts scavenged from the free radical DPPH in IC50 ranged from 130.6 ± 3.0 to 249.9 ± 12.1 µg dry extract/mL. In terms of the anti-inflammatory potential, the most effective extract was from a soil-based plant from Jalisco (BS), reduced from nitric oxide in a RAW 264.7 culture medium, with an IC50 value of 134 µg of dry extract/mL. The BS extract showed a significant neutral lipid-reducing activity in the zebrafish model, ranging from 3.13 µg/mL p < 0.05 to 100 µg/mL p < 0.0001. Overall, the extracts analyzed here for the first time seem promising for future use because of their antioxidant, anti-inflammatory and anti-obesity potential.

2.
Mar Drugs ; 19(3)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803803

ABSTRACT

Obesity is a complex metabolic disease, which is increasing worldwide. The reduction of dietary lipid intake is considered an interesting pathway to reduce fat absorption and to affect the chronic energy imbalance. In this study, zebrafish larvae were used to analyze effects of cyanobacteria on intestinal lipid absorption in vivo. In total, 263 fractions of a cyanobacterial library were screened for PED6 activity, a fluorescent reporter of intestinal lipases, and 11 fractions reduced PED6 activity > 30%. Toxicity was not observed for those fractions, considering mortality, malformations or digestive physiology (protease inhibition). Intestinal long-chain fatty acid uptake (C16) was reduced, but not short-chain fatty acid uptake (C5). Alteration of lipid classes by high-performance thin-layer chromatography (HPTLC) or lipid processing by fluorescent HPTLC was analyzed, and 2 fractions significantly reduced the whole-body triglyceride level. Bioactivity-guided feature-based molecular networking of LC-MS/MS data identified 14 significant bioactive mass peaks (p < 0.01, correlation > 0.95), which consisted of 3 known putative and 11 unknown compounds. All putatively identified compounds were known to be involved in lipid metabolism and obesity. Summarizing, some cyanobacterial strains repressed intestinal lipid absorption without any signs of toxicity and could be developed in the future as nutraceuticals to combat obesity.


Subject(s)
Anti-Obesity Agents/pharmacology , Cyanobacteria/metabolism , Enzyme Inhibitors/pharmacology , Intestinal Absorption/drug effects , Intestines/drug effects , Lipase/antagonists & inhibitors , Lipid Metabolism/drug effects , Zebrafish Proteins/antagonists & inhibitors , Zebrafish/metabolism , Animals , Anti-Obesity Agents/isolation & purification , Enzyme Inhibitors/isolation & purification , Intestines/enzymology , Lipase/metabolism , Zebrafish/embryology , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...