Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS J ; 286(10): 1941-1958, 2019 05.
Article in English | MEDLINE | ID: mdl-30771270

ABSTRACT

DNA-processing protein A, a ubiquitous multidomain DNA-binding protein, plays a crucial role during natural transformation in bacteria. Here, we carried out the structural analysis of DprA from the human pathogen Helicobacter pylori by combining data issued from the 1.8-Å resolution X-ray structure of the Pfam02481 domain dimer (RF), the NMR structure of the carboxy terminal domain (CTD), and the low-resolution structure of the full-length DprA dimer obtained in solution by SAXS. In particular, we sought a molecular function for the CTD, a domain that we show here is essential for transformation in H. pylori. Albeit its structural homology to winged helix DNA-binding motifs, we confirmed that the isolated CTD does not interact with ssDNA nor with dsDNA. The key R52 and K137 residues of RF are crucial for these two interactions. Search for sequences harboring homology to either HpDprA or Rhodopseudomonas palustris DprA CTDs led to the identification of conserved patches in the two CTD. Our structural study revealed the similarity of the structures adopted by these residues in RpDprA CTD and HpDprA CTD. This argues for a conserved, but yet to be defined, CTD function, distinct from DNA binding.


Subject(s)
Bacterial Proteins/chemistry , DNA/metabolism , Membrane Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Conserved Sequence , Crystallography, X-Ray , DNA/chemistry , Helicobacter pylori/chemistry , Membrane Proteins/metabolism , Protein Binding , Protein Conformation, alpha-Helical
2.
J Struct Biol ; 201(2): 88-99, 2018 02.
Article in English | MEDLINE | ID: mdl-28823563

ABSTRACT

We have previously described a highly diverse library of artificial repeat proteins based on thermostable HEAT-like repeats, named αRep. αReps binding specifically to proteins difficult to crystallize have been selected and in several examples, they made possible the crystallization of these proteins. To further simplify the production and crystallization experiments we have explored the production of chimeric proteins corresponding to covalent association between the targets and their specific binders strengthened by a linker. Although chimeric proteins with expression partners are classically used to enhance expression, these fusions cannot usually be used for crystallization. With specific expression partners like a cognate αRep this is no longer true, and chimeric proteins can be expressed purified and crystallized. αRep selection by phage display suppose that at least a small amount of the target protein should be produced to be used as a bait for selection and this might, in some cases, be difficult. We have therefore transferred the αRep library in a new construction adapted to selection by protein complementation assay (PCA). This new procedure allows to select specific binders by direct interaction with the target in the cytoplasm of the bacteria and consequently does not require preliminary purification of target protein. αRep binders selected by PCA or by phage display can be used to enhance expression, stability, solubility and crystallogenesis of proteins that are otherwise difficult to express, purify and/or crystallize.


Subject(s)
Protein Engineering/methods , Recombinant Fusion Proteins/chemistry , Bacterial Proteins/chemistry , Crystallization/methods , Enzyme-Linked Immunosorbent Assay , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Histidine Kinase/chemistry , Peptide Library , Protein Stability , Recombinant Fusion Proteins/genetics , Repetitive Sequences, Amino Acid , Tetrahydrofolate Dehydrogenase/chemistry
3.
FEBS J ; 282(8): 1538-53, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25702779

ABSTRACT

UNLABELLED: The ComD-ComE two-component system controls the competence state of Streptococcus pneumoniae via the phospho-regulation of ComE, which fluctuates between monomeric and dimeric states. We previously showed that the non-phosphorylatable ComE(D) (58A) mutant is monomeric in solution, whereas the ComE(D) (58E) active mimic mutant dimerizes via its REC domains. The crystal structure of ComE(D) (58A) revealed an asymmetric dimer that may represent the activated form of ComE. Here, we investigated the binding between the catalytic domain of ComD, ComE and the promoter region comcde, using small angle X-ray scattering. ComD(catdom) is a dimer that adapts two monomers of ComE, one on each side, placing (Com) (E) D58 residue in front of (Com) (D) H248, a location that is convenient for the intermolecular transfer reaction of the phosphoryl group. The LytTR, ComE(D) (58A) and ComE(D) (58E) complexed with comcde are composed of two protein molecules per DNA duplex. Modeling the complexes against small angle X-ray scattering data indicated that ComE(D) (58E) bound to comcde forms a compact dimer similar to the crystal structure, whereas ComE(D) (58A) -comcde adopts more than one conformation with or without dimer contacts. The various oligomeric states of ComE induce different bending angles of the promoter, which provides a mechanistic scenario for the activation of ComE: the phosphorylation of ComE forces additional bending of comcde, and the release of this bending strain on DNA via the disruption of the ComE dimer may signal the shut-off of the competence state. DATABASE: The molecular models and experimental SAXS data have been deposited on SASBDB (Small Angle Scattering Biological Data Bank) (see http://www.sasbdb.org/aboutSASBDB/) under the SAS codes SASDAA7, SASDAB7 and SASDAC7.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , Scattering, Small Angle , Streptococcus pneumoniae/physiology , X-Ray Diffraction/methods , Amino Acid Sequence , Base Sequence , Gene Expression Regulation, Bacterial , Models, Molecular , Molecular Sequence Data , Phosphorylation , Protein Conformation , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
4.
Nucleic Acids Res ; 42(11): 7395-408, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24782530

ABSTRACT

Natural transformation is a major mechanism of horizontal gene transfer in bacteria that depends on DNA recombination. RecA is central to the homologous recombination pathway, catalyzing DNA strand invasion and homology search. DprA was shown to be a key binding partner of RecA acting as a specific mediator for its loading on the incoming exogenous ssDNA. Although the 3D structures of both RecA and DprA have been solved, the mechanisms underlying their cross-talk remained elusive. By combining molecular docking simulations and experimental validation, we identified a region on RecA, buried at its self-assembly interface and involving three basic residues that contact an acidic triad of DprA previously shown to be crucial for the interaction. At the core of these patches, (DprA)M238 and (RecA)F230 are involved in the interaction. The other DprA binding regions of RecA could involve the N-terminal α-helix and a DNA-binding region. Our data favor a model of DprA acting as a cap of the RecA filament, involving a DprA-RecA interplay at two levels: their own oligomeric states and their respective interaction with DNA. Our model forms the basis for a mechanistic explanation of how DprA can act as a mediator for the loading of RecA on ssDNA.


Subject(s)
Bacterial Proteins/chemistry , DNA, Single-Stranded/metabolism , Membrane Proteins/chemistry , Rec A Recombinases/chemistry , Bacterial Proteins/metabolism , Binding Sites , Evolution, Molecular , Membrane Proteins/metabolism , Models, Molecular , Molecular Docking Simulation , Protein Binding , Protein Conformation , Protein Structure, Secondary , Rec A Recombinases/metabolism , Streptococcus pneumoniae
5.
Nucleic Acids Res ; 42(8): 5302-13, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24500202

ABSTRACT

Natural transformation contributes to the maintenance and to the evolution of the bacterial genomes. In Streptococcus pneumoniae, this function is reached by achieving the competence state, which is under the control of the ComD-ComE two-component system. We present the crystal and solution structures of ComE. We mimicked the active and non-active states by using the phosphorylated mimetic ComE(D58E) and the unphosphorylatable ComE(D58A) mutants. In the crystal, full-length ComE(D58A) dimerizes through its canonical REC receiver domain but with an atypical mode, which is also adopted by the isolated REC(D58A) and REC(D58E). The LytTR domain adopts a tandem arrangement consistent with the two direct repeats of its promoters. However ComE(D58A) is monomeric in solution, as seen by SAXS, by contrast to ComE(D58E) that dimerizes. For both, a relative mobility between the two domains is assumed. Based on these results we propose two possible ways for activation of ComE by phosphorylation.


Subject(s)
Bacterial Proteins/chemistry , Models, Molecular , Phosphorylation , Protein Multimerization , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...