Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2744: 267-278, 2024.
Article in English | MEDLINE | ID: mdl-38683325

ABSTRACT

FastFish-ID for rapid and accurate identification of fish species was conceived at Brandeis University based on pioneering work on Closed-Tube Barcoding (Rice et al., Mitochondrial DNA Part A 27(2):1358-1363, 2016; Sirianni et al., Genome 59:1049-1061, 2016). FastFish-ID was subsequently validated and commercialized at Thermagenix, Inc. using a portable device and high-precision PCR (Naaum et al., Food Res Int 141:110035, 2021). The motivation for these efforts was the pressing need for a technology that could be widely used throughout the seafood supply chain to combat IUU Fishing (Helyar et al., PLOS ONE 9, 2014) and overfishing (FAO, State of the World Fisheries and Aquaculture 2018. http://www.fao.org/documents/card/en/c/I9540EN/ , 2018), along with seafood fraud and mislabeling (Watson et al., Fish Fish 17:585-595, 2015). These destructive practices are wasting fish stocks, frustrating attempts to achieve seafood sustainability, endangering oceanic ecosystems, and causing consumers billions of dollars each year (Porterfield et al., Oceana: February, 2022). During the past three Covid19 pandemic years, EcologeniX, LLC has taken over further development and optimization of FastFish-ID. The present chapter provides an overview of the improvements introduced throughout the FastFish-ID process.


Subject(s)
DNA Barcoding, Taxonomic , Fishes , Animals , DNA Barcoding, Taxonomic/methods , Fishes/genetics , Fishes/classification , Seafood , Polymerase Chain Reaction/methods , DNA, Mitochondrial/genetics , Fisheries
2.
Methods Mol Biol ; 2744: 503-514, 2024.
Article in English | MEDLINE | ID: mdl-38683338

ABSTRACT

FastFish-ID via Closed-Tube barcoding is a portable platform for rapid and accurate identification of fish species that was conceived at Brandeis University, commercialized at Thermagenix, Inc., and further improved at Ecologenix, LLC (see Chap. 17 in this volume). This chapter focuses on the use of FastFish-ID for (1) identification of intraspecies variants, (2) quantitative use of FastFish-ID to measure the decay of fresh fish, and (3) use of FastFish-ID for the identification of dried and processed shark fins.


Subject(s)
DNA Barcoding, Taxonomic , Fishes , Sharks , Animals , DNA Barcoding, Taxonomic/methods , Animal Fins
4.
Food Res Int ; 141: 110035, 2021 03.
Article in English | MEDLINE | ID: mdl-33641956

ABSTRACT

Seafood represents up to 20% of animal protein consumption in global food consumption and is a critical dietary and income resource for the world's population. Currently, over 30% of marine fish stocks are harvested at unsustainable levels, and the industry faces challenges related to Illegal, Unregulated and Unreported (IUU) fishing. Accurate species identification is one critical component of successful stock management and helps combat fraud. Existing DNA-based technologies permit identification of seafood even when morphological features are removed, but are either too time-consuming, too expensive, or too specific for widespread use throughout the seafood supply chain. FASTFISH-ID is an innovative commercial platform for fish species authentication, employing closed-tube barcoding in a portable device. This method begins with asymmetric PCR amplification of the full length DNA barcode sequence and subsequently interrogates the resulting single-stranded DNA with a universal set of Positive/Negative probes labeled in two fluorescent colors. Each closed-tube reaction generates two species-specific fluorescent signatures that are then compared to a cloud-based library of previously validated fluorescent signatures. This novel approach results in rapid, automated species authentication without the need for complex, time consuming, identification by DNA sequencing, or repeated analysis with a panel of species-specific tests. Performance of the FASTFISH-ID platform was assessed in a blinded study carried out in three laboratories located in the UK and North America. The method exhibited a 98% success rate among the participating laboratories when compared to species identification via conventional DNA barcoding by sequencing. Thus, FASTFISH-ID is a promising new platform for combating seafood fraud across the global seafood supply chain.


Subject(s)
DNA Barcoding, Taxonomic , DNA , Animals , DNA/genetics , Polymerase Chain Reaction , Sequence Analysis, DNA , Species Specificity
5.
J Mol Biomark Diagn ; 5(3): 1000175, 2014 May 01.
Article in English | MEDLINE | ID: mdl-25411647

ABSTRACT

BACKGROUND: Numerous mutations in exons 18-21 of the epidermal growth factor receptor (EGFR) gene determine the response of many patients with non-small cell lung carcinoma (NSCLC) to anti-EGFR tyrosine kinase inhibitors (TKIs). This paper describes a single closed-tube assay for simultaneous mutational scanning of EGFR exons 18-21. METHODS: The assay first co-amplifies all four exons as separate single-stranded DNA products using Linear-After-The-Exponential (LATE)-PCR. The amplicons are then interrogated at endpoint along their length using sets of Lights-On/Lights-Off probes of a different color for each exon. The four resulting fluorescent signatures are unique for each underlying DNA sequence. Every mutation in a target potentially alters its unique fluorescent signature thereby revealing the presence of the mutation. RESULTS: The assay readily detects mutations which cause sensitivity or resistance to TKIs and can distinguish these clinically important genetic changes from silent mutations which have no impact on protein function. The assay identifies as little as 5% mutant sequences in mixtures of normal DNA and mutant DNA prepared from cancer cell lines. Proof-of-principle experiments demonstrate mutation identification in formalin-fixed, paraffin-embedded NSCLC biopsies. CONCLUSION: The LATE-PCR EGFR assay described here represents a new type of highly informative, single-tube diagnostic test for mutational scanning of multiple gene coding regions and/or multiple gene targets for personalized cancer therapies.

6.
Sci Rep ; 4: 5921, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25082368

ABSTRACT

Detection of rare mutant alleles in an excess of wild type alleles is increasingly important in cancer diagnosis. Several methods for selective amplification of a mutant allele via the polymerase chain reaction (PCR) have been reported, but each of these methods has its own limitations. A common problem is that Taq DNA polymerase errors early during amplification generate false positive mutations which also accumulate exponentially. In this paper, we described a novel method using hairpin oligonucleotide blockers that can selectively inhibit the amplification of wild type DNA during LATE-PCR amplification. LATE-PCR generates double-stranded DNA exponentially followed by linear amplification of single-stranded DNA. The efficiency of the blocker is optimized by adjusting the LATE-PCR temperature cycling profile. We also demonstrate that it is possible to minimize false positive signals caused by Taq DNA polymerase errors by using a mismatched excess primer plus a modified PCR profile to preferentially enrich for mutant target sequences prior to the start of the exponential phase of LATE-PCR amplification. In combination these procedures permit amplification of specific KRAS mutations in the presence of more than 10,000 fold excess of wild type DNA without false positive signals.


Subject(s)
DNA Mutational Analysis/methods , Mutation , Polymerase Chain Reaction , DNA Primers , Humans , Inverted Repeat Sequences , Kinetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins p21(ras) , ras Proteins/genetics
7.
Nat Protoc ; 2(10): 2429-38, 2007.
Article in English | MEDLINE | ID: mdl-17947984

ABSTRACT

This protocol describes the design and execution of monoplex and multiplex linear-after-the-exponential (LATE)-PCR assays using a novel reagent, PrimeSafe, that suppresses all forms of mispriming. LATE-PCR is an advanced form of asymmetric amplification that uses a limiting primer and an excess primer for efficient exponential amplification of double-stranded DNA, followed by linear amplification of one strand. Each single-stranded amplicon can be quantitatively detected in real time or at end point. By separating primer annealing from product detection, LATE-PCR enables product analysis at low temperatures. Alternatively, each single strand can be sequenced by a convenient Dilute-'N'-Go procedure. Amplified samples are diluted with individual sequencing primers without the use of columns or spins. We have amplified and then sequenced 15 different single-stranded products generated in a single multiplexed LATE-PCR comprised of 15 pairs of unrelated primers. Dilute-'N'-Go dideoxy sequencing is more convenient, faster and less expensive than sequencing double-stranded amplicons generated via conventional symmetric PCR. The preparation of LATE-PCR products for Dilute-'N'-Go sequencing takes only 30 seconds.


Subject(s)
Polymerase Chain Reaction/methods , Benzothiazoles , DNA/analysis , DNA Primers , DNA, Single-Stranded/analysis , Diamines , Indicators and Reagents , Kinetics , Organic Chemicals , Quinolines , Sequence Analysis, DNA , Temperature
8.
BMC Biotechnol ; 6: 44, 2006 Dec 04.
Article in English | MEDLINE | ID: mdl-17144924

ABSTRACT

BACKGROUND: In conventional PCR, total amplicon yield becomes independent of starting template number as amplification reaches plateau and varies significantly among replicate reactions. This paper describes a strategy for reconfiguring PCR so that the signal intensity of a single fluorescent detection probe after PCR thermal cycling reflects genomic composition. The resulting method corrects for product yield variations among replicate amplification reactions, permits resolution of homozygous and heterozygous genotypes based on endpoint fluorescence signal intensities, and readily identifies imbalanced allele ratios equivalent to those arising from gene/chromosomal duplications. Furthermore, the use of only a single colored probe for genotyping enhances the multiplex detection capacity of the assay. RESULTS: Two-Temperature LATE-PCR endpoint genotyping combines Linear-After-The-Exponential (LATE)-PCR (an advanced form of asymmetric PCR that efficiently generates single-stranded DNA) and mismatch-tolerant probes capable of detecting allele-specific targets at high temperature and total single-stranded amplicons at a lower temperature in the same reaction. The method is demonstrated here for genotyping single-nucleotide alleles of the human HEXA gene responsible for Tay-Sachs disease and for genotyping SNP alleles near the human p53 tumor suppressor gene. In each case, the final probe signals were normalized against total single-stranded DNA generated in the same reaction. Normalization reduces the coefficient of variation among replicates from 17.22% to as little as 2.78% and permits endpoint genotyping with >99.7% accuracy. These assays are robust because they are consistent over a wide range of input DNA concentrations and give the same results regardless of how many cycles of linear amplification have elapsed. The method is also sufficiently powerful to distinguish between samples with a 1:1 ratio of two alleles from samples comprised of 2:1 and 1:2 ratios of the same alleles. CONCLUSION: SNP genotyping via Two-Temperature LATE-PCR takes place in a homogeneous closed-tube format and uses a single hybridization probe per SNP site. These assays are convenient, rely on endpoint analysis, improve the options for construction of multiplex assays, and are suitable for SNP genotyping, mutation scanning, and detection of DNA duplication or deletions.


Subject(s)
Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide , Alleles , Genotype , Hexosaminidase A , Humans , Nucleic Acid Hybridization , Tay-Sachs Disease/genetics , Temperature , beta-N-Acetylhexosaminidases/genetics
9.
Anal Biochem ; 353(1): 124-32, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16540077

ABSTRACT

Pyrosequencing is a highly effective method for quantitatively genotyping short genetic sequences, but it currently is hampered by a labor-intensive sample preparation process designed to isolate single-stranded DNA from double-stranded products generated by conventional PCR. Here linear-after-the-exponential (LATE)-PCR is introduced as an efficient and potentially automatable method of directly amplifying single-stranded DNA for pyrosequencing, thereby eliminating the need for solid-phase sample preparation and reducing the risk of laboratory contamination. These improvements are illustrated for single-nucleotide polymorphism genotyping applications, including an integrated single-cell-through-sequencing assay to detect a mutation at the globin IVS 110 site that frequently is responsible for beta-thalassemia.


Subject(s)
DNA, Single-Stranded/analysis , Nucleic Acid Amplification Techniques/methods , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide/genetics , Cell Line , DNA Mutational Analysis , Genetic Variation , Humans , Polymorphism, Single-Stranded Conformational , Sequence Analysis, DNA/methods
10.
Proc Natl Acad Sci U S A ; 102(24): 8609-14, 2005 Jun 14.
Article in English | MEDLINE | ID: mdl-15937116

ABSTRACT

Traditional asymmetric PCR uses conventional PCR primers at unequal concentrations to generate single-stranded DNA. This method, however, is difficult to optimize, often inefficient, and tends to promote nonspecific amplification. An alternative approach, Linear-After-The-Exponential (LATE)-PCR, solves these problems by using primer pairs deliberately designed for use at unequal concentrations. The present report systematically examines the primer design parameters that affect the exponential and linear phases of LATE-PCR amplification. In particular, we investigated how altering the concentration-adjusted melting temperature (Tm) of the limiting primer (TmL) relative to that of the excess primer (TmX) affects both amplification efficiency and specificity during the exponential phase of LATE-PCR. The highest reaction efficiency and specificity were observed when TmL - TmX 5 degrees C. We also investigated how altering TmX relative to the higher Tm of the double-stranded amplicon (TmA) affects the rate and extent of linear amplification. Excess primers with TmX closer to TmA yielded higher rates of linear amplification and stronger signals from a hybridization probe. These design criteria maximize the yield of specific single-stranded DNA products and make LATE-PCR more robust and easier to implement. The conclusions were validated by using primer pairs that amplify sequences within the cystic fibrosis transmembrane regulator (CFTR) gene, mutations of which are responsible for cystic fibrosis.


Subject(s)
DNA Primers/genetics , DNA, Single-Stranded/genetics , Polymerase Chain Reaction/methods , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Transition Temperature
11.
Proc Natl Acad Sci U S A ; 101(7): 1933-8, 2004 Feb 17.
Article in English | MEDLINE | ID: mdl-14769930

ABSTRACT

Conventional asymmetric PCR is inefficient and difficult to optimize because limiting the concentration of one primer lowers its melting temperature below the reaction annealing temperature. Linear-After-The-Exponential (LATE)-PCR describes a new paradigm for primer design that renders assays as efficient as symmetric PCR assays, regardless of primer ratio. LATE-PCR generates single-stranded products with predictable kinetics for many cycles beyond the exponential phase. LATE-PCR also introduces new probe design criteria that uncouple hybridization probe detection from primer annealing and extension, increase probe reliability, improve allele discrimination, and increase signal strength by 80-250% relative to symmetric PCR. These improvements in PCR are particularly useful for real-time quantitative analysis of target numbers in small samples. LATE-PCR is adaptable to high throughput applications in fields such as clinical diagnostics, biodefense, forensics, and DNA sequencing. We showcase LATE-PCR via amplification of the cystic fibrosis CFDelta508 allele and the Tay-Sachs disease TSD 1278 allele from single heterozygous cells.


Subject(s)
Polymerase Chain Reaction/methods , Alleles , Cell Line , Cystic Fibrosis/genetics , DNA Primers/genetics , Humans , Reproducibility of Results , Research Design , Sensitivity and Specificity , Tay-Sachs Disease/genetics , Temperature , Time Factors
12.
Mol Hum Reprod ; 9(12): 815-20, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14614044

ABSTRACT

We present a method for rapid and accurate identification of the normal and DeltaF508 alleles of the cystic fibrosis (CF) gene in single human cells that utilizes LATE (linear after the exponential)-PCR, a newly invented form of asymmetric PCR. Detection of the single-stranded amplicon is carried out in real time, using allele-specific molecular beacons. The LATE-PCR method permits controlled abrupt transition from exponential to linear amplification and thereby enhances the fluorescent signals and reduces variability between replicate samples relative to those obtained using typical real-time PCR. Of 239 single lymphoblasts generating amplification signals, 227 (95%) exhibited signals that met objective quantitative criteria required for diagnosis. Among these samples, 222 were genotyped correctly, for an assay accuracy of 98%. The small number of diagnostic errors was due to allele drop-out among heterozygous lymphoblasts, 4/119 (3.4%), and contamination among homozygous DeltaF508 lymphoblasts, 1/57 (1.8%). LATE-PCR offers a new strategy for preimplantation genetic diagnosis and other fields in which accurate quantitative detection of single copy genes is important.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/diagnosis , Oligonucleotide Probes , Polymerase Chain Reaction/methods , Alleles , Base Sequence , Cell Line, Tumor , Fluorescent Dyes , Humans , Molecular Sequence Data , Spectrometry, Fluorescence/methods
13.
Prenat Diagn ; 22(12): 1130-4, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12454972

ABSTRACT

The results presented here provide the first single-cell genetic assay for Tay-Sachs disease based on real-time PCR. Individual lymphoblasts were lysed with an optimized lysis buffer and assayed using one pair of primers that amplifies both the wild type and 1278 + TATC Tay-Sachs alleles. The resulting amplicons were detected in real time with two molecular beacons each with a different colored fluorochrome. The kinetics of amplicon accumulation generate objective criteria by which to evaluate the validity of each reaction. The assay had an overall utility of 95%, based on the detection of at least one signal in 235 of the 248 attempted tests and an efficiency of 97%, as 7 of the 235 samples were excluded from further analysis for objective quantitative reasons. The accuracy of the assay was 99.1%, because 228 of 230 samples gave signals consistent with the genotype of the cells. Only two of the 135 heterozygous samples were allele drop-outs, a rate far lower than previously reported for single-cell Tay-Sachs assays using conventional methods of PCR.


Subject(s)
Preimplantation Diagnosis/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Tay-Sachs Disease/genetics , Adult , Alleles , Biological Assay/methods , Cell Line , DNA Probes/chemistry , Female , Genotype , Humans , Lymphocytes/cytology , Pregnancy , Reproducibility of Results , Tay-Sachs Disease/diagnosis
14.
Biotechniques ; 32(5): 1106-11, 2002 May.
Article in English | MEDLINE | ID: mdl-12019784

ABSTRACT

Amplification of DNA sequencesfrom single cells via PCR is increasingly used in basic research and clinical diagnostics but remains technically difficult. We have developed a cell lysis protocol that uses an optimized proteinase K solution, named QuantiLyse and permits reliable amplification from individual cells. This protocol was compared to other published methods by means of real-time PCR with molecular beacons. The results demonstrate that QuantiLyse treatment of single lymphocytes renders gene targets more availablefor amplification than other published proteinase K methods or lysis in water. QuantiLyse and an optimized alkaline lysis were equally effective in terms of target availability, although QuantiLyse offers greaterflexibility, as it does not require neutralization and can comprise a higher percentage of the final PCR volume. Maximum gene target availability is also obtained following QuantiLyse treatment of samples containing up to 10000 cells (the largest number tested). Thus, QuantiLyse maximizes the chances that targeted DNA sequences will be available for amplification during the first cycle of PCR, thereby reducing the variability among replicate reactions as well as the likelihood of amplification failure or allele drop-out. QuantiLyse will be useful in a range of investigations aimed at gene detection in small numbers of cells.


Subject(s)
Endopeptidase K/pharmacology , Lymphocytes/physiology , Nucleic Acid Amplification Techniques/methods , Polymerase Chain Reaction , Alkalies/pharmacology , Detergents/pharmacology , Dithiothreitol/pharmacology , Humans , Hydroxides/pharmacology , Lymphocytes/cytology , Magnesium/pharmacology , Potassium Compounds/pharmacology , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...