Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 60(45): 5808-5811, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38712454

ABSTRACT

Metal-organic frameworks (MOFs) have shown promise for adsorptive separations of metal ions. Herein, MOFs based on highly stable Zr(IV) building units were systematically functionalized with targeted metal binding groups. Through competitive adsorption studies, it was shown that the selectivity for different metal ions was directly tunable through functional group chemistry.

2.
Commun Chem ; 6(1): 172, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37607981

ABSTRACT

Adsorption reactions at solid-water interfaces define elemental fate and transport and enable contaminant clean-up, water purification, and chemical separations. For nanoparticles and nanopores, nanoconfinement may lead to unexpected and hard-to-predict products and energetics of adsorption, compared to analogous unconfined surfaces. Here we use X-ray absorption fine structure spectroscopy and operando flow microcalorimetry to determine nanoconfinement effects on the energetics and local coordination environment of trivalent lanthanides adsorbed on Al2O3 surfaces. We show that the nanoconfinement effects on adsorption become more pronounced as the hydration free energy, ΔGhydr, of a lanthanide decreases. Neodymium (Nd3+) has the least exothermic ΔGhydr (-3336 kJ·mol-1) and forms mostly outer-sphere complexes on unconfined Al2O3 surfaces but shifts to inner-sphere complexes within the 4 nm Al2O3 pores. Lutetium (Lu3+) has the most exothermic ΔGhydr (-3589 kJ·mol-1) and forms inner-sphere adsorption complexes regardless of whether Al2O3 surfaces are nanoconfined. Importantly, the energetics of adsorption is exothermic in nanopores only, and becomes endothermic with increasing surface coverage. Changes to the energetics and products of adsorption in nanopores are ion-specific, even within chemically similar trivalent lanthanide series, and can be predicted by considering the hydration energies of adsorbing ions.

SELECTION OF CITATIONS
SEARCH DETAIL
...