Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 18(2): e1009202, 2022 02.
Article in English | MEDLINE | ID: mdl-35130321

ABSTRACT

Zinc-finger antiviral protein (ZAP), also known as poly(ADP-ribose) polymerase 13 (PARP13), is an antiviral factor that selectively targets viral RNA for degradation. ZAP is active against both DNA and RNA viruses, including important human pathogens such as hepatitis B virus and type 1 human immunodeficiency virus (HIV-1). ZAP selectively binds CpG dinucleotides through its N-terminal RNA-binding domain, which consists of four zinc fingers. ZAP also contains a central region that consists of a fifth zinc finger and two WWE domains. Through structural and biochemical studies, we found that the fifth zinc finger and tandem WWEs of ZAP combine into a single integrated domain that binds to poly(ADP-ribose) (PAR), a cellular polynucleotide. PAR binding is mediated by the second WWE module of ZAP and likely involves specific recognition of an adenosine diphosphate-containing unit of PAR. Mutation of the PAR binding site in ZAP abrogates the interaction in vitro and diminishes ZAP activity against a CpG-rich HIV-1 reporter virus and murine leukemia virus. In cells, PAR facilitates formation of non-membranous sub-cellular compartments such as DNA repair foci, spindle poles and cytosolic RNA stress granules. Our results suggest that ZAP-mediated viral mRNA degradation is facilitated by PAR, and provides a biophysical rationale for the reported association of ZAP with RNA stress granules.


Subject(s)
HIV-1/metabolism , Leukemia Virus, Murine/metabolism , Poly Adenosine Diphosphate Ribose/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Zinc Fingers , Animals , Antiviral Agents/pharmacology , Crystallography, X-Ray , HEK293 Cells , HeLa Cells , Humans , Mice , Mutation , Protein Binding , Protein Conformation , Protein Domains , RNA Stability , RNA, Viral , RNA-Binding Proteins/pharmacology
2.
Arch Toxicol ; 96(1): 287-303, 2022 01.
Article in English | MEDLINE | ID: mdl-34668024

ABSTRACT

In an effort to replace, reduce and refine animal experimentation, there is an unmet need to advance current in vitro models that offer features with physiological relevance and enhanced predictivity of in vivo toxicological output. Hepatic toxicology is key following chemical, drug and nanomaterials (NMs) exposure, as the liver is vital in metabolic detoxification of chemicals as well as being a major site of xenobiotic accumulation (i.e., low solubility particulates). With the ever-increasing production of NMs, there is a necessity to evaluate the probability of consequential adverse effects, not only in health but also in clinically asymptomatic liver, as part of risk stratification strategies. In this study, two unique disease initiation and maintenance protocols were developed and utilised to mimic steatosis and pre-fibrotic NASH in scaffold-free 3D liver microtissues (MT) composed of primary human hepatocytes, hepatic stellate cells, Kupffer cells and sinusoidal endothelial cells. The characterized diseased MT were utilized for the toxicological assessment of a panel of xenobiotics. Highlights from the study included: 1. Clear experimental evidence for the pre-existing liver disease is important in the augmentation of xenobiotic-induced hepatotoxicity and 2. NMs are able to activate stellate cells. The data demonstrated that pre-existing disease is vital in the intensification of xenobiotic-induced liver damage. Therefore, it is imperative that all stages of the wide spectrum of liver disease are incorporated in risk assessment strategies. This is of significant consequence, as a substantial number of the general population suffer from sub-clinical liver injury without any apparent or diagnosed manifestations.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Endothelial Cells/metabolism , Hepatocytes , Humans , Kupffer Cells , Liver , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/metabolism
3.
Plant Physiol ; 188(1): 191-207, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34662400

ABSTRACT

ß-Amylases (BAMs) are key enzymes of transitory starch degradation in chloroplasts, a process that buffers the availability of photosynthetically fixed carbon over the diel cycle to maintain energy levels and plant growth at night. However, during vascular plant evolution, the BAM gene family diversified, giving rise to isoforms with different compartmentation and biological activities. Here, we characterized BETA-AMYLASE 9 (BAM9) of Arabidopsis (Arabidopsis thaliana). Among the BAMs, BAM9 is most closely related to BAM4 but is more widely conserved in plants. BAM9 and BAM4 share features including their plastidial localization and lack of measurable α-1,4-glucan hydrolyzing capacity. BAM4 is a regulator of starch degradation, and bam4 mutants display a starch-excess phenotype. Although bam9 single mutants resemble the wild-type (WT), genetic experiments reveal that the loss of BAM9 markedly enhances the starch-excess phenotypes of mutants already impaired in starch degradation. Thus, BAM9 also regulates starch breakdown, but in a different way. Interestingly, BAM9 gene expression is responsive to several environmental changes, while that of BAM4 is not. Furthermore, overexpression of BAM9 in the WT reduced leaf starch content, but overexpression in bam4 failed to complement fully that mutant's starch-excess phenotype, suggesting that BAM9 and BAM4 are not redundant. We propose that BAM9 activates starch degradation, helping to manage carbohydrate availability in response to fluctuations in environmental conditions. As such, BAM9 represents an interesting gene target to explore in crop species.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Plant Growth Regulators/metabolism , Plant Leaves/metabolism , Plastids/metabolism , Starch/metabolism , beta-Amylase/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Plant Growth Regulators/genetics , Plant Leaves/genetics , Plastids/genetics , Starch/genetics , beta-Amylase/genetics
4.
Sci Rep ; 11(1): 22765, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34815444

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is a progressive and severe liver disease, characterized by lipid accumulation, inflammation, and downstream fibrosis. Despite its increasing prevalence, there is no approved treatment yet available for patients. This has been at least partially due to the lack of predictive preclinical models for studying this complex disease. Here, we present a 3D in vitro microtissue model that uses spheroidal, scaffold free co-culture of primary human hepatocytes, Kupffer cells, liver endothelial cells and hepatic stellate cells. Upon exposure to defined and clinically relevant lipotoxic and inflammatory stimuli, these microtissues develop key pathophysiological features of NASH within 10 days, including an increase of intracellular triglyceride content and lipids, and release of pro-inflammatory cytokines. Furthermore, fibrosis was evident through release of procollagen type I, and increased deposition of extracellular collagen fibers. Whole transcriptome analysis revealed changes in the regulation of pathways associated with NASH, such as lipid metabolism, inflammation and collagen processing. Importantly, treatment with anti-NASH drug candidates (Selonsertib and Firsocostat) decreased the measured specific disease parameter, in accordance with clinical observations. These drug treatments also significantly changed the gene expression patterns of the microtissues, thus providing mechanisms of action and revealing therapeutic potential. In summary, this human NASH model represents a promising drug discovery tool for understanding the underlying complex mechanisms in NASH, evaluating efficacy of anti-NASH drug candidates and identifying new approaches for therapeutic interventions.


Subject(s)
Cell Culture Techniques, Three Dimensional/methods , Endothelial Cells/drug effects , Gene Expression Regulation/drug effects , Hepatocytes/drug effects , Kupffer Cells/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Pharmaceutical Preparations/administration & dosage , Coculture Techniques , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gene Expression Profiling , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , In Vitro Techniques , Kupffer Cells/metabolism , Kupffer Cells/pathology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...