Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Zootaxa ; 5311(2): 232-250, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37518646

ABSTRACT

Diurnal dwarf geckos of the genus Lygodactylus are distributed in tropical and subtropical regions and live in highly diverse habitats. The genus currently comprises 79 species and several candidates for new species or subspecies. Most of these taxa occur in Sub-Saharan Africa and Madagascar, with only two described species in South America. Although the main center of diversity of Lygodactylus currently is Africa, the genus probably has a Malagasy origin, followed by two or three independent transoceanic dispersal events between Madagascar and Africa and one trans-Atlantic dispersal from Africa to South America. A few species colonised islands in the Western Indian Ocean belonging to the Zanzibar Archipelago and to the Îles Éparses. Here we examined L. grotei pakenhami from Pemba Island, L. insularis from Juan de Nova, and L. verticillatus from Europa Island to clarify their taxonomic status and their origin. Concerning L. grotei pakenhami and L. insularis, preceding studies pointed to a relation to species of the African L. capensis group. In contrast, L. verticillatus on Europa Island is considered to be conspecific with Malagasy populations. Therefore, we conducted a phylogenetic study of the African L. capensis group and the Malagasy L. verticillatus group, and examined color pattern, selected morphological characters and two mitochondrial markers (ND2 for African and 16S rRNA for Malagasy Lygodactylus). Lygodactylus grotei pakenhami from Pemba and L. grotei from mainland Africa cannot be distinguished by their scalation, but their reciprocal monophyly suggested by mitochondrial DNA, conspicuously different coloration (both in adults and hatchlings) and their high genetic distances (16.3% in ND2) support the hypothesis that these taxa represent two distinct species. Consequently, we elevate L. grotei pakenhami to species level, as Lygodactylus pakenhami Loveridge, 1941. Lygodactylus pakenhami is endemic to Pemba Island which was possibly separated from the African mainland during the late Miocene or Early Pliocene (6 million years ago). The simplest explanation for the existence of L. pakenhami on Pemba is vicariance. A recent, human-mediated transportation is excluded, as the molecular data clearly indicate a longer period of isolation. Lygodactylus insularis has been supposed to be related to the taxa 'capensis' or 'grotei'. However, it is impossible to discern the relationship of L. insularis, L. capensis and L. grotei by means of scalation or coloration alone. Our molecular phylogenetic analyses reveal that L. insularis is embedded within the L. capensis group, clearly indicating its African origin. The single gene (ND2) as well as the multigene analyses fully support a closer common origin of L. insularis and L. capensis than of L. insularis and L. grotei. However, the position of L. insularis within the clade formed by L. insularis, L. nyaneka, L. capensis sensu stricto and six L. aff. capensis groups is not clearly resolved. Lygodactylus insularis is endemic on Juan de Nova Island, an old low elevation atoll. That all L. insularis mitochondrial sequences are very similar to each other and together form a monophyletic lineage is in agreement with the hypothesis of a single dispersal event to the island. For the L. verticillatus population from Europa Island our mitochondrial data suggest close relationships to conspecific samples from the coastal regions of south-western Madagascar. As we found no relevant morphological or genetic differences between the insular and the Malagasy populations of L. verticillatus, and no remarkable genetic variation within the monophyletic lineage on Europa, we suggest a single, very recent dispersal event, perhaps human-mediated. Although the genus Lygodactylus colonised Africa, islands in the Gulf of Guinea, South America and some islands in the Western Indian Ocean, it seems-compared to other lizard genera-to be only moderately successful in transoceanic long-distance dispersal.


Subject(s)
Lizards , Humans , Animals , Phylogeny , Indian Ocean , RNA, Ribosomal, 16S
2.
Mol Biol Rep ; 50(6): 5501-5507, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37043149

ABSTRACT

BACKGROUND: The Manapany day gecko (Phelsuma inexpectata) is endemic to the south of Reunion Island. Threatened by habitat fragmentation and loss, human activities and invasive species, P. inexpectata is considered as critically endangered. Conservation measures are required but data on the species are missing, notably on its genetic diversity and population structure for which no specific markers are available to date. Here, we aimed to develop molecular markers to allow genetic studies of P. inexpectata. METHODS AND RESULTS: We developed and characterized 20 polymorphic microsatellite markers based on 23 P. inexpectata individuals sampled from 10 sites. Then, the markers were tested on a total of 101 individuals, 30 from a natural site and 71 from an anthropized site. The mean values of Na, Ho and He were 2.3 (± 0.2), 0.353 (± 0.053) and 0.345 (± 0.046) in the natural site and 2.8 (± 0.3), 0.345 (± 0.051) and 0.338 (± 0.048) in the anthropized site, respectively. Based on the combined loci, the probability of identity (PID) for unrelated specimens were 2.7 × 10-7 and 2.6 × 10-7 in the natural and anthropized site, respectively. CONCLUSIONS: This work provides the first set of microsatellite markers for P. inexpectata, constituting a valuable tool to conduct classical genetic studies on the species, such as estimating genetic diversity, population structure and kinship relationships among individuals. Such studies will provide relevant information on P. inexpectata and will therefore be helpful in the implementation of conservation measures for this threatened species.


Subject(s)
Endangered Species , Lizards , Animals , Humans , Reunion , Lizards/genetics , Microsatellite Repeats/genetics , Ecosystem
3.
Proc Biol Sci ; 286(1904): 20182575, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31161911

ABSTRACT

The importance of long-distance dispersal (LDD) in shaping geographical distributions has been debated since the nineteenth century. In terrestrial vertebrates, LDD events across large water bodies are considered highly improbable, but organismal traits affecting dispersal capacity are generally not taken into account. Here, we focus on a recent lizard radiation and combine a summary-coalescent species tree based on 1225 exons with a probabilistic model that links dispersal capacity to an evolving trait, to investigate whether ecological specialization has influenced the probability of trans-oceanic dispersal. Cryptoblepharus species that occur in coastal habitats have on average dispersed 13 to 14 times more frequently than non-coastal species and coastal specialization has, therefore, led to an extraordinarily widespread distribution that includes multiple continents and distant island archipelagoes. Furthermore, their presence across the Pacific substantially predates the age of human colonization and we can explicitly reject the possibility that these patterns are solely shaped by human-mediated dispersal. Overall, by combining new analytical methods with a comprehensive phylogenomic dataset, we use a quantitative framework to show how coastal specialization can influence dispersal capacity and eventually shape geographical distributions at a macroevolutionary scale.


Subject(s)
Animal Distribution , Lizards/physiology , Animals , Biological Evolution , Ecosystem , Lizards/classification , Lizards/genetics , Oceans and Seas , Phylogeny , Phylogeography , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...