Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 11(11): 11678-11686, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29068661

ABSTRACT

The observation of micrometer size spin relaxation makes graphene a promising material for applications in spintronics requiring long-distance spin communication. However, spin dependent scatterings at the contact/graphene interfaces affect the spin injection efficiencies and hence prevent the material from achieving its full potential. While this major issue could be eliminated by nondestructive direct optical spin injection schemes, graphene's intrinsically low spin-orbit coupling strength and optical absorption place an obstacle in their realization. We overcome this challenge by creating sharp artificial interfaces between graphene and WSe2 monolayers. Application of circularly polarized light activates the spin-polarized charge carriers in the WSe2 layer due to its spin-coupled valley-selective absorption. These carriers diffuse into the superjacent graphene layer, transport over a 3.5 µm distance, and are finally detected electrically using Co/h-BN contacts in a nonlocal geometry. Polarization-dependent measurements confirm the spin origin of the nonlocal signal. We also demonstrate that such signal is absent if graphene is contacted to bilayer WSe2 where the inversion symmetry is restored.

2.
ACS Nano ; 11(6): 6355-6361, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28530829

ABSTRACT

Transition metal dichalcogenides (TMDCs), together with other two-dimensional (2D) materials, have attracted great interest due to the unique optical and electrical properties of atomically thin layers. In order to fulfill their potential, developing large-area growth and understanding the properties of TMDCs have become crucial. Here, we have used molecular beam epitaxy (MBE) to grow atomically thin MoSe2 on GaAs(111)B. No intermediate compounds were detected at the interface of as-grown films. Careful optimization of the growth temperature can result in the growth of highly aligned films with only two possible crystalline orientations due to broken inversion symmetry. As-grown films can be transferred onto insulating substrates, allowing their optical and electrical properties to be probed. By using polymer electrolyte gating, we have achieved ambipolar transport in MBE-grown MoSe2. The temperature-dependent transport characteristics can be explained by the 2D variable-range hopping (2D-VRH) model, indicating that the transport is strongly limited by the disorder in the film.

3.
Nano Lett ; 16(9): 5792-7, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27575518

ABSTRACT

The band structure of transition metal dichalcogenides (TMDCs) with valence band edges at different locations in the momentum space could be harnessed to build devices that operate relying on the valley degree of freedom. To realize such valleytronic devices, it is necessary to control and manipulate the charge density in these valleys, resulting in valley polarization. While this has been demonstrated using optical excitation, generation of valley polarization in electronic devices without optical excitation remains difficult. Here, we demonstrate spin injection from a ferromagnetic electrode into a heterojunction based on monolayers of WSe2 and MoS2 and lateral transport of spin-polarized holes within the WSe2 layer. The resulting valley polarization leads to circularly polarized light emission that can be tuned using an external magnetic field. This demonstration of spin injection and magnetoelectronic control over valley polarization provides a new opportunity for realizing combined spin and valleytronic devices based on spin-valley locking in semiconducting TMDCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...