Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 105: 129741, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38599296

ABSTRACT

ZJ-101, a structurally simplified analog of marine natural product superstolide A, was previously designed and synthesized in our laboratory. In the present study four new analogs of ZJ-101 were designed and synthesized to investigate the structure-activity relationship of the acetamide moiety of the molecule. The biological evaluation showed that the amide moiety is important for the molecule's anticancer activity. Replacing the amide with other functional groups such as a sulfonamide group, a carbamate group, and a urea group resulted in the decrease in anticancer activity.


Subject(s)
Amides , Antineoplastic Agents , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Humans , Amides/chemistry , Amides/pharmacology , Amides/chemical synthesis , Cell Line, Tumor , Molecular Structure , Cell Proliferation/drug effects , Macrolides/chemistry , Macrolides/pharmacology , Macrolides/chemical synthesis , Dose-Response Relationship, Drug
2.
Bioorg Med Chem Lett ; 91: 129372, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37301523

ABSTRACT

ZJ-101 is a structurally simplified analog of marine natural product superstolide A that was previously designed and synthesized in our laboratory. Biological investigation shows that ZJ-101 maintains the potent anticancer activity of the original natural product with an undefined mechanism of action. To facilitate chemical biology study, a biotinylated ZJ-101 was synthesized and biologically evaluated.


Subject(s)
Biological Products , Macrolides , Macrolides/pharmacology , Tetrahydronaphthalenes/pharmacology , Biological Products/pharmacology , Drug Screening Assays, Antitumor
3.
Int J Mol Sci ; 24(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37298526

ABSTRACT

Marine natural products represent a unique source for clinically relevant drugs due to their vast molecular and mechanistic diversity. ZJ-101 is a structurally simplified analog of the marine natural product superstolide A, isolated from the New Caledonian sea sponge Neosiphonia Superstes. The mechanistic activity of the superstolides has until recently remained a mystery. Here, we have identified potent antiproliferative and antiadhesive effects of ZJ-101 on cancer cell lines. Furthermore, through dose-response transcriptomics, we found unique dysregulation of the endomembrane system by ZJ-101 including a selective inhibition of O-glycosylation via lectin and glycomics analysis. We applied this mechanism to a triple-negative breast cancer spheroid model and identified a potential for the reversal of 3D-induced chemoresistance, suggesting a potential for ZJ-101 as a synergistic therapeutic agent.


Subject(s)
Biological Products , Biological Products/pharmacology , Macrolides/pharmacology , Tetrahydronaphthalenes/pharmacology , Cell Line
4.
J Biol Chem ; 289(26): 18582-92, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24811172

ABSTRACT

Early onset intellectual disabilities result in significant societal and economic costs and affect 1-3% of the population. The underlying genetic determinants are beginning to emerge and are interpreted in the context of years of work characterizing postsynaptic receptor and signaling functions of learning and memory. DNA sequence analysis of intellectual disability patients has revealed greater than 80 loci on the X-chromosome that are potentially linked to disease. One of the loci is zDHHC9, a gene encoding a Ras protein acyltransferase. Protein palmitoylation is a reversible modification that controls the subcellular localization and distribution of membrane receptors, scaffolds, and signaling proteins required for neuronal plasticity. Palmitoylation occurs in two steps. In the first step, autopalmitoylation, an enzyme-palmitoyl intermediate is formed. During the second step, the palmitoyl moiety is transferred to a protein substrate, or if no substrate is available, hydrolysis of the thioester linkage produces the enzyme and free palmitate. In this study, we demonstrate that two naturally occurring variants of zDHHC9, encoding R148W and P150S, affect the autopalmitoylation step of the reaction by lowering the steady state amount of the palmitoyl-zDHHC9 intermediate.


Subject(s)
Acyltransferases/genetics , Acyltransferases/metabolism , Chromosomes, Human, X/genetics , Intellectual Disability/enzymology , Mutation, Missense , Amino Acid Sequence , Chromosomes, Human, X/metabolism , Female , Humans , Intellectual Disability/genetics , Intellectual Disability/metabolism , Lipoylation , Male , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...