Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 4467-4470, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29060889

ABSTRACT

The recognition of brain evoked responses at the single-trial level is a challenging task. Typical non-invasive brain-computer interfaces based on event-related brain responses use eletroencephalograhy. In this study, we consider brain signals recorded with magnetoencephalography (MEG), and we expect to take advantage of the high spatial and temporal resolution for the detection of targets in a series of images. This study was used for the data analysis competition held in the 20th International Conference on Biomagnetism (Biomag) 2016, wherein the goal was to provide a method for single-trial detection of even-related fields corresponding to the presentation of happy faces during the rapid presentation of images of faces with six different facial expressions (anger, disgust, fear, neutrality, sadness, and happiness). The datasets correspond to 204 gradiometers signals obtained from four participants. The best method is based on the combination of several approaches, and mainly based on Riemannian geometry, and it provided an area under the ROC curve of 0.956±0.043. The results show that a high recognition rate of facial expressions can be obtained at the signal-trial level using advanced signal processing and machine learning methodologies.


Subject(s)
Magnetoencephalography , Emotions , Facial Expression , Fear , Happiness , Humans
2.
Neuroimage ; 36(3): 645-60, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17466539

ABSTRACT

A new methodology based on Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) and Graph Theory is presented for characterizing the anatomical connections between brain gray matter areas. In a first step, brain voxels are modeled as nodes of a non-directed graph in which the weight of an arc linking two neighbor nodes is assumed to be proportional to the probability of being connected by nervous fibers. This probability is estimated by means of probabilistic tissue segmentation and intravoxel white matter orientational distribution function, obtained from anatomical MRI and DW-MRI, respectively. A new tractography algorithm for finding white matter routes is also introduced. This algorithm solves the most probable path problem between any two nodes, leading to the assessment of probabilistic brain anatomical connection maps. In a second step, for assessing anatomical connectivity between K gray matter structures, the previous graph is redefined as a K+1 partite graph by partitioning the initial nodes set in K non-overlapped gray matter subsets and one subset clustering the remaining nodes. Three different measures are proposed for quantifying anatomical connections between any pair of gray matter subsets: Anatomical Connection Strength (ACS), Anatomical Connection Density (ACD) and Anatomical Connection Probability (ACP). This methodology was applied to both artificial and actual human data. Results show that nervous fiber pathways between some regions of interest were reconstructed correctly. Additionally, mean connectivity maps of ACS, ACD and ACP between 71 gray matter structures for five healthy subjects are presented.


Subject(s)
Brain/anatomy & histology , Computer Graphics , Diffusion Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/statistics & numerical data , Image Processing, Computer-Assisted/statistics & numerical data , Algorithms , Humans , Models, Anatomic , Models, Statistical , Nerve Fibers/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...