Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Brain Mapp ; 30(6): 1898-910, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19378278

ABSTRACT

This article describes a spatio-temporal EEG/MEG source imaging (ESI) that extracts a parsimonious set of "atoms" or components, each the outer product of both a spatial and a temporal signature. The sources estimated are localized as smooth, minimally overlapping patches of cortical activation that are obtained by constraining spatial signatures to be nonnegative (NN), orthogonal, sparse, and smooth-in effect integrating ESI with NN-ICA. This constitutes a generalization of work by this group on the use of multiple penalties for ESI. A multiplicative update algorithm is derived being stable, fast and converging within seconds near the optimal solution. This procedure, spatio-temporal tomographic NN ICA (STTONNICA), is equally able to recover superficial or deep sources without additional weighting constraints as tested with simulations. STTONNICA analysis of ERPs to familiar and unfamiliar faces yields an occipital-fusiform atom activated by all faces and a more frontal atom that only is active with familiar faces. The temporal signatures are at present unconstrained but can be required to be smooth, complex, or following a multivariate autoregressive model.


Subject(s)
Brain Mapping/methods , Electroencephalography/methods , Auditory Perception/physiology , Brain/diagnostic imaging , Brain/physiology , Computer Simulation , Electrophysiology/methods , Evoked Potentials, Auditory , Humans , Magnetoencephalography/methods , Models, Neurological , Space Perception , Tomography/methods , Tomography, X-Ray Computed/methods
2.
Hum Brain Mapp ; 30(9): 2701-21, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19107753

ABSTRACT

This article reviews progress and challenges in model driven EEG/fMRI fusion with a focus on brain oscillations. Fusion is the combination of both imaging modalities based on a cascade of forward models from ensemble of post-synaptic potentials (ePSP) to net primary current densities (nPCD) to EEG; and from ePSP to vasomotor feed forward signal (VFFSS) to BOLD. In absence of a model, data driven fusion creates maps of correlations between EEG and BOLD or between estimates of nPCD and VFFS. A consistent finding has been that of positive correlations between EEG alpha power and BOLD in both frontal cortices and thalamus and of negative ones for the occipital region. For model driven fusion we formulate a neural mass EEG/fMRI model coupled to a metabolic hemodynamic model. For exploratory simulations we show that the Local Linearization (LL) method for integrating stochastic differential equations is appropriate for highly nonlinear dynamics. It has been successfully applied to small and medium sized networks, reproducing the described EEG/BOLD correlations. A new LL-algebraic method allows simulations with hundreds of thousands of neural populations, with connectivities and conduction delays estimated from diffusion weighted MRI. For parameter and state estimation, Kalman filtering combined with the LL method estimates the innovations or prediction errors. From these the likelihood of models given data are obtained. The LL-innovation estimation method has been already applied to small and medium scale models. With improved Bayesian computations the practical estimation of very large scale EEG/fMRI models shall soon be possible.


Subject(s)
Biological Clocks/physiology , Brain Mapping/methods , Brain/physiology , Electroencephalography/methods , Magnetic Resonance Imaging/methods , Bayes Theorem , Brain/anatomy & histology , Cerebrovascular Circulation/physiology , Computer Simulation , Evoked Potentials/physiology , Humans , Nerve Net/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...