Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 12: 1362695, 2024.
Article in English | MEDLINE | ID: mdl-38444829

ABSTRACT

Gastrulation in zebrafish embryos commences with the morphogenetic rearrangement of blastodermal cells, which undergo a coordinated spreading from the animal pole to wrap around the egg at the vegetal pole. This rearrangement, known as epiboly, relies on the orchestrated activity of maternal transcripts present in the egg, compensating for the gradual activation of the zygotic genome. Epiboly involves the mechano-transducer activity of yap1 but what are the regulators of yap1 activity and whether these are maternally or zygotically derived remain elusive. Our study reveals the crucial role of maternal vgll4a, a proposed Yap1 competitor, during zebrafish epiboly. In embryos lacking maternal/zygotic vgll4a (MZvgll4a), the progression of epiboly and blastopore closure is delayed. This delay is associated with the ruffled appearance of the sliding epithelial cells, decreased expression of yap1-downstream targets and transient impairment of the actomyosin ring at the syncytial layer. Our study also shows that, rather than competing with yap1, vgll4a modulates the levels of the E-cadherin/ß-catenin adhesion complex at the blastomeres' plasma membrane and hence their actin cortex distribution. Taking these results together, we propose that maternal vgll4a acts at epiboly initiation upstream of yap1 and the E-cadherin/ß-catenin adhesion complex, contributing to a proper balance between tissue tension/cohesion and contractility, thereby promoting a timely epiboly progression.

2.
Development ; 150(2)2023 01 15.
Article in English | MEDLINE | ID: mdl-36714981

ABSTRACT

The vertebrate eye is shaped as a cup, a conformation that optimizes vision and is acquired early in development through a process known as optic cup morphogenesis. Imaging living, transparent teleost embryos and mammalian stem cell-derived organoids has provided insights into the rearrangements that eye progenitors undergo to adopt such a shape. Molecular and pharmacological interference with these rearrangements has further identified the underlying molecular machineries and the physical forces involved in this morphogenetic process. In this Review, we summarize the resulting scenarios and proposed models that include common and species-specific events. We further discuss how these studies and those in environmentally adapted blind species may shed light on human inborn eye malformations that result from failures in optic cup morphogenesis, including microphthalmia, anophthalmia and coloboma.


Subject(s)
Coloboma , Eye , Animals , Humans , Embryonic Development , Organogenesis , Morphogenesis/genetics , Retina , Mammals
3.
Gene ; 823: 146357, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35189246

ABSTRACT

This study examines Y-chromosome and mtDNA markers in the population of the island of Kiritimati in the context of geographically targeted reference populations from the Pacific. Kiritimati derives its population from the atoll islands of the Gilbert Archipelago and representsa geographicaltransitional region between Micronesia, Polynesia and Melanesia that likely played a critical role during theAustronesian expansion. The large presence(84.1%)of individuals withO-M175, O2a-M324 and O2a2b-P164 sub-haplogroups, 69.9% being O2a2b-P164, the Y-STR homogeneity within O2a2b-P164 and the very recent age of the sub-haplogroup(363-548 years ago)inKiritimati suggestthe arrival ofa genetically homogenous population to the Gilberteses followed by a population expassion.The close Y-STR haplotype affinities with profiles from the Samoa and Tonga Archipelagos point to an unprecedented massive post-Austronesian expansionexodus from West Polynesia.Contrasting the abundance of AustronesianO2a2b-P164 sub-haplogroup, the most abundantMelanesian/Papuansub-haplogroup,C-M130is present at a frequency of 13.5%. Thenetwork topology suggests that C-M130 arrived to theKiribati Archipelago from West Polynesia, specifically from West Samoa, Tonga and/or Tutuila subsequent to the Austronesian expansion about 832-1408 years ago. The haplotype affinities withinO2a2b-P164 argue for anoriginal source in Taiwan and its dispersal to West Polynesia and then to Southeast Micronesia. The present investigation provides an understanding of the genetic composition and complex migration history of an understudied region of the Pacific and provides evidence for recent dispersals towards Micronesia from West Polynesia subsequent to the initial Austronesian expansion.


Subject(s)
Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , Genetics, Population/methods , Haplotypes , Human Migration , Humans , Micronesia/ethnology , Phylogeny , Polynesia/ethnology , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...