Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plast Reconstr Surg Glob Open ; 9(5): e3568, 2021 May.
Article in English | MEDLINE | ID: mdl-34881144

ABSTRACT

Various modalities to facilitate nerve regeneration have been described in the literature with limited success. We hypothesized that negative pressure applied to a sectioned peripheral nerve would enhance nerve regeneration by promoting angiogenesis and axonal lengthening. METHODS: Wistar rats' sciatic nerves were cut (creating ~7 mm nerve gap) and placed into a silicone T-tube, to which negative pressure was applied. The rats were divided into 4 groups: control (no pressure), group A (low pressure: 10 mm Hg), group B (medium pressure: 20/30 mm Hg) and group C (high pressure: 50/70 mm Hg). The nerve segments were retrieved after 7 days for gross and histological analysis. RESULTS: In total, 22 rats completed the study. The control group showed insignificant nerve growth, whereas the 3 negative pressure groups showed nerve growth and nerve gap reduction. The true nerve growth was highest in group A (median: 3.54 mm) compared to group B, C, and control (medians: 1.19 mm, 1.3 mm, and 0.35 mm); however, only group A was found to be significantly different to the control group (**P < 0.01). Similarly, angiogenesis was observed to be significantly greater in group A (**P < 0.01) in comparison to the control. CONCLUSIONS: Negative pressure stimulated nerve lengthening and angiogenesis within an in vivo rat model. Low negative pressure (10 mm Hg) provided superior results over the higher negative pressure groups and the control, favoring axonal growth. Further studies are required with greater number of rats and longer recovery time to assess the functional outcome.

2.
Acta Biomater ; 118: 69-82, 2020 12.
Article in English | MEDLINE | ID: mdl-33039595

ABSTRACT

In this study we developed and validated a 3D-printed drug delivery system (3DPDDS) to 1) improve local treatment efficacy of commonly applied chemotherapeutic agents in bone cancers to ultimately decrease their systemic side effects and 2) explore its concomitant diagnostic potential. Thus, we locally applied 3D-printed medical-grade polycaprolactone (mPCL) scaffolds loaded with Doxorubicin (DOX) and measured its effect in a humanized primary bone cancer model. A bioengineered species-sensitive orthotopic humanized bone niche was established at the femur of NOD-SCID IL2Rγnull (NSG) mice. After 6 weeks of in vivo maturation into a humanized ossicle, Luc-SAOS-2 cells were injected orthotopically to induce local growth of osteosarcoma (OS). After 16 weeks of OS development, a biopsy-like defect was created within the tumor tissue to locally implant the 3DPDDS with 3 different DOX loading doses into the defect zone. Histo- and morphological analysis demonstrated a typical invasive OS growth pattern inside a functionally intact humanized ossicle as well as metastatic spread to the murine lung parenchyma. Analysis of the 3DPDDS revealed the implants' ability to inhibit tumor infiltration and showed local tumor cell death adjacent to the scaffolds without any systemic side effects. Together these results indicate a therapeutic and diagnostic capacity of 3DPDDS in an orthotopic humanized OS tumor model.


Subject(s)
Bone Neoplasms , Osteosarcoma , Animals , Biocompatible Materials , Bone Neoplasms/drug therapy , Mice , Mice, Inbred NOD , Mice, SCID , Osteosarcoma/drug therapy , Printing, Three-Dimensional
3.
Cancers (Basel) ; 12(8)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32781703

ABSTRACT

Despite the bone marrow microenvironment being widely recognised as a key player in cancer research, the current animal models that represent a human haematopoietic system lack the contribution of the humanised marrow microenvironment. Here we describe a murine model that relies on the combination of an orthotopic humanised tissue-engineered bone construct (ohTEBC) with patient-specific bone marrow (BM) cells to create a humanised bone marrow (hBM) niche capable of supporting the engraftment of human haematopoietic cells. Results showed that this model supports the engraftment of human CD34+ cells from a healthy BM with human haematopoietic cells migrating into the mouse BM, human BM compartment, spleen and peripheral blood. We compared these results with the engraftment capacity of human CD34+ cells obtained from patients with multiple myeloma (MM). We demonstrated that CD34+ cells derived from a diseased BM had a reduced engraftment potential compared to healthy patients and that a higher cell dose is required to achieve engraftment of human haematopoietic cells in peripheral blood. Finally, we observed that hematopoietic cells obtained from the mobilised peripheral blood of patients yields a higher number of CD34+, overcoming this problem. In conclusion, this humanised mouse model has potential as a unique and patient-specific pre-clinical platform for the study of tumour-microenvironment interactions, including human bone and haematopoietic cells, and could, in the future, serve as a drug testing platform.

5.
Biomaterials ; 240: 119791, 2020 05.
Article in English | MEDLINE | ID: mdl-32109589

ABSTRACT

In advanced breast cancer (BCa) patients, not the primary tumor, but the development of distant metastases, which occur mainly in the organ bone, and their adverse health effects are responsible for high mortality. Targeted delivery of already known drugs which displayed potency, but rather unfavorable pharmacokinetic properties, might be a promising approach to overcome the current limitations of metastatic BCa therapy. Camptothecin (CPT) is a highly cytotoxic chemotherapeutic compound, yet poorly water-soluble and non-specific. Here, CPT was loaded into porous silicon nanoparticles (pSiNP) displaying the epidermal growth factor receptor (EGFR)-targeting antibody (Ab) cetuximab to generate a soluble and targeted nanoscale delivery vehicle for cancer treatment. After confirming the cytotoxic effect of targeted CPT-loaded pSiNP in vitro on MDA-MB-231BO cells, nanoparticles were studied in a humanized BCa bone metastasis mouse model. Humanized tissue-engineered bone constructs (hTEBCs) provided a humanized microenvironment for BCa bone metastases in female NOD-scid IL2Rgnull (NSG) mice. Actively targeted CPT-loaded pSiNP led to a reduction of orthotopic primary tumor growth, increased survival rate and significant decrease in hTEBC and murine lung, liver and bone metastases. This study demonstrates that targeted delivery via pSiNP is an effective approach to employ CPT and other potent anti-cancer compounds with poor pharmacokinetic profiles in cancer therapy.


Subject(s)
Breast Neoplasms , Nanoparticles , Animals , Breast Neoplasms/drug therapy , Camptothecin , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred NOD , Silicon , Tumor Microenvironment
6.
Bone Res ; 7: 31, 2019.
Article in English | MEDLINE | ID: mdl-31646018

ABSTRACT

Advanced prostate cancer (PCa) is known for its high prevalence to metastasize to bone, at which point it is considered incurable. Despite significant effort, there is no animal model capable of recapitulating the complexity of PCa bone metastasis. The humanized mouse model for PCa bone metastasis used in this study aims to provide a platform for the assessment of new drugs by recapitulating the human-human cell interactions relevant for disease development and progression. The humanized tissue-engineered bone construct (hTEBC) was created within NOD-scid IL2rgnull (NSG) mice and was used for the study of experimental PC3-Luc bone metastases. It was confirmed that PC3-Luc cells preferentially grew in the hTEBC compared with murine bone. The translational potential of the humanized mouse model for PCa bone metastasis was evaluated with two clinically approved osteoprotective therapies, the non-species-specific bisphosphonate zoledronic acid (ZA) or the human-specific antibody Denosumab, both targeting Receptor Activator of Nuclear Factor Kappa-Β Ligand. ZA, but not Denosumab, significantly decreased metastases in hTEBCs, but not murine femora. These results highlight the importance of humanized models for the preclinical research on PCa bone metastasis and indicate the potential of the bioengineered mouse model to closely mimic the metastatic cascade of PCa cells to human bone. Eventually, it will enable the development of new effective antimetastatic treatments.

7.
Biomaterials ; 197: 72-85, 2019 03.
Article in English | MEDLINE | ID: mdl-30641266

ABSTRACT

The tumour microenvironment plays a vital role in the development of solid malignancies. Here we describe an in vitro human prostate cancer microtissue model that facilitates the incorporation and interrogation of key elements of the local prostatic tumour microenvironment. Primary patient-derived cancer-associated fibroblasts (CAFs) were cultured in three-dimensional (3D) melt electrowritten scaffolds where they deposited extensive extracellular matrix (ECM) and promoted significant changes in prostate epithelial morphology, when compared to matched non-malignant prostatic fibroblasts (NPFs). The addition of mast cells, a resident prostatic immune population that is expanded during early malignancy, enhanced the morphometric transition of benign epithelia via a tryptase-mediated mechanism. Our patient-specific 3D microtissues reveal a cascade of interactions between prostatic CAFs, their native ECM and mast cell-derived tryptase, rendering them important microenvironmental drivers of prostate cancer progression.


Subject(s)
Cancer-Associated Fibroblasts/pathology , Mast Cells/pathology , Prostate/pathology , Prostatic Neoplasms/pathology , Tryptases/metabolism , Cancer-Associated Fibroblasts/metabolism , Cell Line, Tumor , Cells, Cultured , Coculture Techniques , Disease Progression , Humans , Male , Mast Cells/metabolism , Prostate/metabolism , Prostatic Neoplasms/metabolism , Tissue Engineering , Tissue Scaffolds/chemistry , Tumor Microenvironment
8.
Thromb Haemost ; 118(7): 1329-1339, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29874688

ABSTRACT

Chondroitin sulphate (CS) has long been used to treat osteoarthritis. Some investigations have also shown that the treatment with CS could reduce coronary events in patients with heart disease but no studies have identified the mechanistic role of these therapeutic effects. We aimed to investigate how the treatment with CS can interfere with the progress of atherosclerosis. The aortic arch, thoracic aorta and serum were obtained from apolipoprotein E (ApoE) knockout mice fed for 10 weeks with high-fat diet and then treated with CS (300 mg/kg, n = 15) or vehicle (n = 15) for 4 weeks. Atheromatous plaques were highlighted in aortas with Oil Red staining and analysed by microscopy. ApoE knockout mice treated with CS exhibited attenuated atheroma lesion size by 68% as compared with animals receiving vehicle. Serum lipids, glucose and C-reactive protein were not affected by treatment with CS. To investigate whether CS locally affects the inflamed endothelium or the formation of foam cells in plaques, human endothelial cells and monocytes were stimulated with tumour necrosis factor α or phorbol myristate acetate in the presence or absence of CS. CS reduced the expression of vascular cell adhesion molecule 1, intercellular adhesion molecule 1 and ephrin-B2 and improved the migration of inflamed endothelial cells. CS inhibited foam cell formation in vivo and concomitantly CD36 and CD146 expression and oxidized low-density lipoprotein uptake and accumulation in cultured activated human monocytes and macrophages. Reported cardioprotective effects of CS may arise from modulation of pro-inflammatory activation of endothelium and monocytes and foam cell formation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Aorta, Thoracic/drug effects , Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , Chondroitin Sulfates/pharmacology , Inflammation Mediators/metabolism , Inflammation/prevention & control , Animals , Aorta, Thoracic/metabolism , Aorta, Thoracic/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/pathology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Blood Glucose/metabolism , C-Reactive Protein/metabolism , Diet, High-Fat , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Foam Cells/drug effects , Foam Cells/metabolism , Foam Cells/pathology , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/blood , Lipids/blood , Lipoproteins, LDL/metabolism , Male , Mice, Knockout, ApoE , Monocytes/drug effects , Monocytes/metabolism , Monocytes/pathology , Plaque, Atherosclerotic , THP-1 Cells
9.
Obesity (Silver Spring) ; 21(12): E616-25, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23595969

ABSTRACT

OBJECTIVE: Persistent inflammation and impaired adipogenesis are frequent features of obesity and underlie the development of its complications. However, the factors behind adipose tissue dysfunction are not completely understood. Previously it was shown that histone demethylase KDM1A is required for adipogenesis. DESIGN AND METHODS: Kdm1a expression was knocked down in 3T3-L1 preadipocytes by siRNA transfection and whole-genome expression profiling was performed by microarray hybridization. The role of NF-κß and C/EBPß was analyzed by incubation with the inhibitor parthenolide and by cebpb knockdown, respectively. RESULTS: Knockdown of kdm1a or rcor2 in 3T3-L1 preadipocytes results in impaired differentiation and induction of inflammatory gene expression. Enhanced expression of il6 in kdm1a knocked down preadipocytes is associated with increased recruitment of C/EBPß and the NF-κß subunit RelA to the il6 promoter. Cebpb knockdown attenuates the induction of il6 expression in kdm1a knocked down cells, whereas simultaneous cebpb knockdown and NF-κß inhibition abrogates it. Dietary-induced and genetic mouse models of obesity display decreased KDM1A in adipose tissue, and this correlates with increased expression of proinflammatory genes and C/EBPß. CONCLUSION: KDM1A represses the expression of inflammatory genes in preadipocytes. Dysregulated kdm1a expression in preadipocytes may thus participate in the development of obesity-associated inflammation.


Subject(s)
Adipocytes/metabolism , Gene Expression Regulation , Histone Demethylases/metabolism , Oxidoreductases, N-Demethylating/metabolism , 3T3-L1 Cells , Adipogenesis/physiology , Adipose Tissue/metabolism , Animals , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Differentiation , Cell Line , Co-Repressor Proteins , Endothelial Cells/metabolism , Gene Expression Profiling , Gene Knockdown Techniques , Histone Demethylases/genetics , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , NF-kappa B/genetics , NF-kappa B/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Oxidoreductases, N-Demethylating/genetics , Promoter Regions, Genetic , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...