Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38793334

ABSTRACT

The global presence of pharmaceutical pollutants in water sources represents a burgeoning public health concern. Recent studies underscore the urgency of addressing this class of emerging contaminants. In this context, our work focuses on synthesizing a composite material, FexOy/MAF-32, through a streamlined one-pot reaction process, as an adsorbent for diclofenac, an emerging environmental contaminant frequently found in freshwater environments and linked to potential toxicity towards several organisms such as fish and mussels. A thorough characterization was performed to elucidate the structural composition of the composite. The material presents magnetic properties attributed to its superparamagnetic behavior, which facilitates the recovery efficiency of the composite post-diclofenac adsorption. Our study further involves a comparative analysis between the FexOy/MAF-32 and a non-magnetic counterpart, comprised solely of 2-ethylimidazolate zinc polymer. This comparison aims to discern the relative advantages and disadvantages of incorporating magnetic iron oxide nanoparticles in the contaminant removal process facilitated by a coordination polymer. Our findings reveal that even a minimal incorporation of iron oxide nanoparticles substantially enhanced the composite's overall performance in pollutant adsorption.

2.
Chem Mater ; 36(9): 3981-3998, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764748

ABSTRACT

Spinel oxide nanocrystals are attractive materials for photoinduced advanced oxidation processes that degrade organic pollutants in water due to their chemical stability and tunability, visible light absorption, and magnetic recoverability. However, a systematic understanding of the structural and chemical factors that control the reactivity of specific spinel oxide nanocrystal materials toward photoinduced degradation processes is lacking. This Perspective illustrates these knowledge gaps through an investigation into the impacts of surface chemistry and composition of spinel ferrite nanocrystals of formula MFe2O4 (M = Mg, Fe, Co, Ni, Cu, Zn) on their ability to remove a model organic pollutant (methyl orange (MO)) from water. We identify two mechanisms by which the nanocrystals remove MO from water: (i) surface adsorption and (ii) photoinduced degradation under visible light irradiation in the presence of hydrogen peroxide via the photo-Fenton reaction. Nanocrystals that do not contain any surface ligands are more effective at removing MO from water than nanocrystals that contain surface ligands, despite our observation that the ligand-less nanocrystals do not form stable colloidal dispersions in water, while ligand-coated nanocrystals are colloidally stable. For many of the spinel ferrite compositions studied here, the fraction of methyl orange removal via adsorption to the nanocrystal surface in the absence of photoexcitation is larger than the fraction removed under irradiation. Our data indicate that the composition-dependent surface charge of the nanocrystals controls the degree of surface adsorption of the charged MO molecule. Overall, these results demonstrate that careful consideration of the impacts of surface chemistry on the behavior of spinel ferrite nanocrystals is required to accurately assess and subsequently understand their activity toward the photoinduced degradation of organic molecules.

3.
Chem Mater ; 34(16): 7446-7459, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36039100

ABSTRACT

This paper describes the first synthetic method to achieve independent control over both the cation distribution (quantified by the inversion parameter x) and size of colloidal ZnFe2O4 nanocrystals. Use of a heterobimetallic triangular complex of formula ZnFe2(µ3-O)(µ2-O2CCF3)6(H2O)3 as a single-source precursor, solvothermal reaction conditions, absence of hydroxyl groups from the reaction solvent, and the presence of oleylamine are required to achieve well-defined, crystalline, and monodisperse ZnFe2O4 nanoparticles. The size of the ZnFe2O4 nanocrystals increases as the ratio of oleic acid and oleylamine ligands to precursor increases. The inversion parameter increases with increasing solubility of the precursor in the reaction solvent, with the presence of oleic acid in the reaction mixture, and with decreasing reaction temperature. These results are consistent with a mechanism in which ligand exchange between oleic acid and carboxylate ligands bound to the precursor complex influences the degree to which the reaction produces a kinetically trapped or thermodynamically stable cation distribution. Importantly, these results indicate that preservation of the triangular Zn-O-Fe2 core structure of the precursor in the reactive monomer species is crucial to the production of a phase-pure ZnFe2O4 product and to the ability to tune the cation distribution. Overall, these results demonstrate the advantages of using a single-source precursor and solvothermal reaction conditions to achieve synthetic control over the structure of ternary spinel ferrite nanocrystals.

4.
Chem Sci ; 12(38): 12744-12753, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34703561

ABSTRACT

We report the synthesis and characterisation of a series of siloxide-functionalised polyoxovanadate-alkoxide (POV-alkoxide) clusters, [V6O6(OSiMe3)(OMe)12] n (n = 1-, 2-), that serve as molecular models for proton and hydrogen-atom uptake in vanadium dioxide, respectively. Installation of a siloxide moiety on the surface of the Lindqvist core was accomplished via addition of trimethylsilyl trifluoromethylsulfonate to the fully-oxygenated cluster [V6O7(OMe)12]2-. Characterisation of [V6O6(OSiMe3)(OMe)12]1- by X-ray photoelectron spectroscopy reveals that the incorporation of the siloxide group does not result in charge separation within the hexavanadate assembly, an observation that contrasts directly with the behavior of clusters bearing substitutional dopants. The reduced assembly, [V6O6(OSiMe3)(OMe)12]2-, provides an isoelectronic model for H-doped VO2, with a vanadium(iii) ion embedded within the cluster core. Notably, structural analysis of [V6O6(OSiMe3)(OMe)12]2- reveals bond perturbations at the siloxide-functionalised vanadium centre that resemble those invoked upon H-atom uptake in VO2 through ab initio calculations. Our results offer atomically precise insight into the local structural and electronic consequences of the installation of hydrogen-atom-like dopants in VO2, and challenge current perspectives of the operative mechanism of electron-proton co-doping in these materials.

5.
Inorg Chem ; 60(7): 4291-4305, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33734686

ABSTRACT

Metal oxide materials that adopt the spinel crystal structure, such as metal ferrites (MFe2O4), present tetrahedral (A) and octahedral [B] sublattice sites surrounded by oxygen anions that provide a relatively weak crystal-field splitting. The formula of a metal ferrite material is most precisely described as (M1-xFex)[MxFe2-x]O4, where the parentheses and square brackets denote the tetrahedral and octahedral sites, respectively, and x is the inversion parameter quantifying the distribution of M2+ and Fe3+ cations among these sites. The electronic, magnetic, and optical properties of spinel ferrites all depend on the magnitude of x, which, in turn, depends on the relative sizes of the cations, their charge, and the relative crystal-field stabilization afforded by tetrahedral or octahedral coordination. Compared to bulk spinel ferrites, the large surface-area-to-volume ratio of spinel ferrite nanocrystals provides additional structural degrees of freedom that enable access to a broader range of x values. Achieving synthetic control over the degree of inversion in addition to the size and shape is critical to tuning the properties of spinel ferrite nanocrystals. In this Forum Article, we review physical inorganic methods used to quantify x in spinel ferrite nanocrystals, describe how the electronic, magnetic, and optical properties of these nanocrystals depend on x, and discuss emerging strategies for achieving synthetic control over this parameter.

6.
Dalton Trans ; 49(45): 16348-16358, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32432619

ABSTRACT

The use of heterobimetallic metal complexes as molecular single-source precursors is a promising strategy for the targeted synthesis of phase-pure stoichiometric ternary metal oxide nanocrystals. However, the design and synthesis of these precursors is not trivial and can require considerable effort. Using spinel metal ferrite nanocrystals of formula MFe2O4 (M = Fe2+, Co2+, Ni2+, Cu2+, and Zn2+) as a model system, this paper evaluates the efficacy of the single-source precursor approach by comparing directly nanocrystals synthesized from the solvothermal reaction of heterobimetallic trinuclear oxo-bridged clusters of formula MIIFeIII2(µ3-O)(µ2-O2CR)6(H2O)3, R = CF3 to nanocrystals synthesized from the solvothermal reaction of stoichiometric mixtures of multi-source precursors, such as metal acetate or nitrate salts. For each M explored here, the clusters form phase-pure MFe2O4 nanocrystals with significantly narrower size distributions than nanocrystals synthesized from multi-source-precursors. In the case of M = Cu, the multi-source metal salt precursors produce a mixture of CuO and CuFe2O4. Additionally, changing the electronic nature of the R-group on the bridging carboxylate ligand from electron withdrawing (CF3) to electron donating (CH3 or C(CH3)3) decreases the average diameter of the resulting nanocrystals by a factor of two. The cluster molecules therefore offer superior control over both morphology and composition for transition metal ferrite nanocrystals. We hypothesize that this remarkable performance arises from the presence of pre-formed M2+-O-Fe3+ moieties in the cluster molecules that enable direct nucleation of MFe2O4 and preclude nucleation of binary oxide impurities.

SELECTION OF CITATIONS
SEARCH DETAIL
...