Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Br J Cancer ; 126(11): 1604-1615, 2022 06.
Article in English | MEDLINE | ID: mdl-35347323

ABSTRACT

BACKGROUND: Liver metastasis is the primary cause of colorectal cancer (CRC)-associated death. Aryl-hydrocarbon receptor-interacting protein (AIP), a putative positive intermediary in aryl-hydrocarbon receptor-mediated signalling, is overexpressed in highly metastatic human KM12SM CRC cells and other highly metastatic CRC cells. METHODS: Meta-analysis and immunohistochemistry were used to assess the relevance of AIP. Cellular functions and signalling mechanisms mediated by AIP were assessed by gain-of-function experiments and in vitro and in vivo experiments. RESULTS: A significant association of high AIP expression with poor CRC patients' survival was observed. Gain-of-function and quantitative proteomics experiments demonstrated that AIP increased tumorigenic and metastatic properties of isogenic KM12C (poorly metastatic) and KM12SM (highly metastatic to the liver) CRC cells. AIP overexpression dysregulated epithelial-to-mesenchymal (EMT) markers and induced several transcription factors and Cadherin-17 activation. The former induced the signalling activation of AKT, SRC and JNK kinases to increase adhesion, migration and invasion of CRC cells. In vivo, AIP expressing KM12 cells induced tumour growth and liver metastasis. Furthermore, KM12C (poorly metastatic) cells ectopically expressing AIP became metastatic to the liver. CONCLUSIONS: Our data reveal new roles for AIP in regulating proteins associated with cancer and metastasis to induce tumorigenic and metastatic properties in colon cancer cells driving liver metastasis.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Liver Neoplasms , Rectal Neoplasms , Carcinogenesis/genetics , Cell Line, Tumor , Cell Movement , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , Hydrocarbons , Immunohistochemistry , Liver Neoplasms/secondary , Neoplasm Metastasis
2.
J Proteome Res ; 20(11): 5115-5130, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34628858

ABSTRACT

New biomarkers of Alzheimer's disease (AD) with a diagnostic value in preclinical and prodromal stages are urgently needed. AD-related serum autoantibodies are potential candidate biomarkers. Here, we aimed at identifying AD-related serum autoantibodies using protein microarrays and mass spectrometry-based methods. To this end, an untargeted complementary screening using high-density (42,100 antigens) and low-density (384 antigens) planar protein-epitope signature tag (PrEST) arrays and an immunoprecipitation protocol coupled to mass spectrometry analysis were used for serum autoantibody profiling. From the untargeted screening phase, 377 antigens corresponding to 338 proteins were selected for validation. Out of them, IVD, CYFIP1, and ADD2 seroreactivity was validated using 128 sera from AD patients and controls by PrEST-suspension bead arrays, and ELISA or luminescence Halotag-based bead immunoassay using full-length recombinant proteins. Importantly, IVD, CYFIP1, and ADD2 showed in combination a noticeable AD diagnostic ability. Moreover, IVD protein abundance in the prefrontal cortex was significantly two-fold higher in AD patients than in controls by western blot and immunohistochemistry, whereas CYFIP1 and ADD2 were significantly down-regulated in AD patients. The panel of AD-related autoantigens identified by a comprehensive multiomics approach may provide new insights of the disease and should help in the blood-based diagnosis of Alzheimer's disease. Mass spectrometry raw data are available in the ProteomeXchange database with the access number PXD028392.


Subject(s)
Alzheimer Disease , Autoantibodies , Autoantigens , Biomarkers , Humans , Protein Array Analysis/methods
3.
Methods Mol Biol ; 2344: 31-46, 2021.
Article in English | MEDLINE | ID: mdl-34115350

ABSTRACT

Chronic diseases are the leading cause of disability and responsible for about 63% of deaths worldwide. Among the noninfectious chronic diseases with the highest incidence are cancer and neurodegenerative diseases. Although they have been extensively studied in the last years, there is still an urgent need to find and elucidate the molecular mechanisms underlying their formation and progression to get an early diagnosis and find new therapeutic targets of intervention. Beyond other microarray-based proteomic techniques more extensively used because of their commercial availability, such as protein and antibody microarrays, phage microarrays are another kind of protein microarrays useful for the identification and characterization of disease-specific humoral immune responses and to get further insights into these devastating diseases. Here, we describe the integration and utilization of phage microarrays, which offer such a combination of sensitivity and cost-effective multiplexing capabilities that makes them an affordable strategy for the characterization of humoral immune responses in multiple diseases.


Subject(s)
Immunity, Humoral/immunology , Neoplasms/immunology , Neurodegenerative Diseases/immunology , Protein Array Analysis , Humans , Neoplasms/diagnosis , Neurodegenerative Diseases/diagnosis
4.
Theranostics ; 10(7): 3022-3034, 2020.
Article in English | MEDLINE | ID: mdl-32194852

ABSTRACT

Background and Purpose: The humoral immune response in cancer patients can be used for early detection of the disease. Autoantibodies raised against tumor-associated antigens (TAAs) are promising clinical biomarkers for reliable cancer diagnosis, prognosis, and therapy monitoring. In this study, an electrochemical disposable multiplexed immunosensing platform able to integrate difficult- and easy-to-express colorectal cancer (CRC) TAAs is reported for the sensitive determination of eight CRC-specific autoantibodies. Methods: The electrochemical immunosensing approach involves the use of magnetic microcarriers (MBs) as solid supports modified with covalently immobilized HaloTag fusion proteins for the selective capture of specific autoantibodies. After magnetic capture of the modified MBs onto screen-printed carbon working electrodes, the amperometric responses measured using the hydroquinone (HQ)/H2O2 system were related to the levels of autoantibodies in plasma. Results: The biosensing platform was applied to the analysis of autoantibodies against 8 TAAs described for the first time in this work in plasma samples from healthy asymptomatic individuals (n=3), and patients with high-risk of developing CRC (n=3), and from patients already diagnosed with colorectal (n=3), lung (n=2) or breast (n=2) cancer. The developed bioplatform demonstrated an improved discrimination between CRC patients and controls (asymptomatic healthy individuals and breast and lung cancer patients) compared to an ELISA-like luminescence test. Conclusions: The proposed methodology uses a just-in-time produced protein in a simpler protocol, with low sample volume, and involves cost-effective instrumentation, which could be used in a high-throughput manner for reliable population screening to facilitate the detection of early CRC patients at affordable cost.


Subject(s)
Antibodies, Neoplasm/blood , Autoantibodies/blood , Biosensing Techniques , Colorectal Neoplasms/diagnosis , Electrochemical Techniques/methods , Antibody Specificity , Antigens, Neoplasm/immunology , Area Under Curve , Asymptomatic Diseases , Biomarkers, Tumor , Breast Neoplasms/blood , Colorectal Neoplasms/blood , Colorectal Neoplasms/immunology , Electrochemical Techniques/instrumentation , Electrodes , Female , Humans , Hydroquinones , Immobilized Proteins/immunology , Lung Neoplasms/blood , Male , ROC Curve , Recombinant Fusion Proteins/immunology , Sensitivity and Specificity
5.
J Proteomics ; 214: 103635, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31918032

ABSTRACT

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer related death worldwide. Its diagnosis at early stages would significantly improve the survival of CRC patients. The humoral immune response has been demonstrated useful for cancer diagnosis, predating clinical symptoms up to 3 years. Here, we employed an in-depth seroproteomic approach to identify proteins that elicit a humoral immune response in CRC patients. The seroproteomic approach relied on the immunoprecipitation with patient-derived autoantibodies of proteins from CRC cell lines with different metastatic properties followed by LC-MS/MS. After bioinformatics, we focused on 31 targets of CRC autoantibodies. After WB and IHC validation, ERP44 and TALDO1 showed potential to discriminate disease-free and metastatic CRC patients, and time to recurrence of CRC patients in stage II. Using plasma samples of 30 healthy individuals, 28 premalignant individuals, and 32 CRC patients, nine out of 13 selected targets for seroreactive analysis showed significant diagnostic ability to discriminate either CRC patients or premalignant subjects from controls. Our results suggest that the here defined panel of CRC autoantibodies and their target proteins should be included in CRC blood-based biomarker panels to get a clinically useful blood-based diagnostic signature for CRC detection. SIGNIFICANCE: Colorectal cancer is one of the deadliest cancer types mainly due to its late diagnosis. Its early diagnosis, therefore, is of great importance since it would significantly improve the survival of CRC patients. In our work, the in-depth seroproteomic analysis of colorectal cancer using isolated IgGs from colorectal cancer patients and controls and protein extract of colorectal cancer cells provide the identification of valuable biomarkers with diagnostic and prognostic ability of the disease.


Subject(s)
Colorectal Neoplasms , Biomarkers, Tumor , Chromatography, Liquid , Colorectal Neoplasms/diagnosis , Humans , Prognosis , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...