Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Immunol ; 24(5): 792-801, 2023 05.
Article in English | MEDLINE | ID: mdl-37081148

ABSTRACT

Natural killer (NK) cells are commonly reduced in human tumors, enabling many to evade surveillance. Here, we sought to identify cues that alter NK cell activity in tumors. We found that, in human lung cancer, the presence of NK cells inversely correlated with that of monocyte-derived macrophages (mo-macs). In a murine model of lung adenocarcinoma, we show that engulfment of tumor debris by mo-macs triggers a pro-tumorigenic program governed by triggering receptor expressed on myeloid cells 2 (TREM2). Genetic deletion of Trem2 rescued NK cell accumulation and enabled an NK cell-mediated regression of lung tumors. TREM2+ mo-macs reduced NK cell activity by modulating interleukin (IL)-18/IL-18BP decoy interactions and IL-15 production. Notably, TREM2 blockade synergized with an NK cell-activating agent to further inhibit tumor growth. Altogether, our findings identify a new axis, in which TREM2+ mo-macs suppress NK cell accumulation and cytolytic activity. Dual targeting of macrophages and NK cells represents a new strategy to boost antitumor immunity.


Subject(s)
Killer Cells, Natural , Lung Neoplasms , Humans , Mice , Animals , Macrophages , Myeloid Cells , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics
2.
Brachytherapy ; 16(6): 1246-1251, 2017.
Article in English | MEDLINE | ID: mdl-28838649

ABSTRACT

PURPOSE/OBJECTIVES: Preclinical and clinical evidence indicate that the proimmune effects of radiotherapy can be synergistically augmented with immunostimulatory monoclonal antibodies (mAb) to act both on irradiated tumor lesions and on tumors at distant, nonirradiated sites. We have recently reported that external beam radiotherapy achieves abscopal effects when combined with antagonist anti-PD1 mAbs and agonist anti-CD137 (4-1BB) mAbs. The goal of this work is to study the abscopal effects of radiotherapy instigated by brachytherapy techniques. METHODS AND MATERIALS: Mice bearing a subcutaneous colorectal carcinoma, MC38 (colorectal cancer), in both flanks were randomly assigned to receive brachytherapy or not (8 Gy × three fractions) to only one of the two grafted tumors, in combination with intraperitoneal immunostimulatory monoclonal antibodies (anti-PD1, anti-CD137, and/or their respective isotype controls). To study the abscopal effects of brachytherapy, we established an experimental set up that permits irradiation of mouse tumors sparing a distant site resembling metastasis. Such second nonirradiated tumor was used as indicator of abscopal effect. Tumor size was monitored every 2 days. RESULTS: Abscopal effects on distant nonirradiated subcutaneous tumor lesions of transplanted MC38-derived tumors only took place when brachytherapy was combined with immunostimulatory anti-PD1 and/or anti-CD137 mAbs. CONCLUSIONS: Our results demonstrate that immunotherapy-potentiated abscopal effects can be attained by brachytherapy. Accordingly, immunotherapy plus brachytherapy combinations are suitable for clinical translation.


Subject(s)
Adenocarcinoma/drug therapy , Adenocarcinoma/radiotherapy , Antibodies, Monoclonal/therapeutic use , Brachytherapy , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/radiotherapy , Immunologic Factors/therapeutic use , Animals , Cell Line, Tumor , Female , Humans , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
3.
Proc Natl Acad Sci U S A ; 112(24): 7551-6, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26034288

ABSTRACT

Cancer immunotherapy is undergoing significant progress due to recent clinical successes by refined adoptive T-cell transfer and immunostimulatory monoclonal Ab (mAbs). B16F10-derived OVA-expressing mouse melanomas resist curative immunotherapy with either adoptive transfer of activated anti-OVA OT1 CTLs or agonist anti-CD137 (4-1BB) mAb. However, when acting in synergistic combination, these treatments consistently achieve tumor eradication. Tumor-infiltrating lymphocytes that accomplish tumor rejection exhibit enhanced effector functions in both transferred OT-1 and endogenous cytotoxic T lymphocytes (CTLs). This is consistent with higher levels of expression of eomesodermin in transferred and endogenous CTLs and with intravital live-cell two-photon microscopy evidence for more efficacious CTL-mediated tumor cell killing. Anti-CD137 mAb treatment resulted in prolonged intratumor persistence of the OT1 CTL-effector cells and improved function with focused and confined interaction kinetics of OT-1 CTL with target cells and increased apoptosis induction lasting up to six days postadoptive transfer. The synergy of adoptive T-cell therapy and agonist anti-CD137 mAb thus results from in vivo enhancement and sustainment of effector functions.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Immunotherapy, Adoptive/methods , Melanoma, Experimental/therapy , T-Lymphocytes, Cytotoxic/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology , Animals , Avian Proteins/genetics , Cell Line, Tumor , Combined Modality Therapy , Lymphocytes, Tumor-Infiltrating/immunology , Male , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Ovalbumin/genetics , T-Box Domain Proteins/metabolism , Tumor Microenvironment/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/deficiency , Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...