Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1043(1): 3-7, 2004 Jul 16.
Article in English | MEDLINE | ID: mdl-15317406

ABSTRACT

Monitoring amino acid metabolism during fermentation has significant potential from the standpoint of strain selection, optimizing growth and production in host strains, and profiling microbial metabolism and growth state. A method has been developed based on rapid quantification of underivatized amino acids using liquid chromatography-electrospray tandem mass spectrometry (LC-MS-MS) to monitor the metabolism of 20 amino acids during microbial fermentation. The use of a teicoplanin-based chiral stationary phase coupled with electrospray tandem mass spectrometry allows complete amino acid analyses in less than 4 min. Quantification is accomplished using five isotopically labeled amino acids as internal standards. Because comprehensive chromatographic separation and derivatization are not required, analysis time is significantly less than traditional reversed- or normal-phase LC-based amino acid assays. Intra-sample precisions for amino acid measurements in fermentation supernatants using this method average 4.9% (R.S.D.). Inter-day (inter-fermentation) precisions for individual amino acid measurements range from 4.2 to 129% (R.S.D.). Calibration curves are linear over the range 0-300 microg/ml, and detection limits are estimated at 50-450 ng/ml. Data visualization techniques for constructing semi-quantitative fermentation profiles of nitrogen source utilization have also been developed and implemented, and demonstrate that amino acid profiles generally correlate with observed growth profiles. Further, cellular growth events, such as lag-time and cell lysis can be detected using this methodology. Correlation coefficients for the time profiles of each amino acid measured illustrate that while several amino acids are differentially metabolized in similar fermentations, a select group of amino acids display strong correlations in these samples, indicating a sub-population of analytes that may be most useful for fermentation profiling.


Subject(s)
Amino Acids/metabolism , Chromatography, Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Calibration , Fermentation , Reference Standards , Reproducibility of Results
2.
Biotechnol Bioeng ; 78(5): 567-75, 2002 Jun 05.
Article in English | MEDLINE | ID: mdl-12115126

ABSTRACT

Arylsulfotransferase (AST, EC 2.8.2.22), an enzyme capable of sulfating a wide range of phenol-containing compounds was purified from a Clostridium innocuum isolate (strain 554). The enzyme has a molecular weight of 320 kDa and is composed of four subunits. Unlike many mammalian and plant arylsulfotransferases, AST from Clostridium utilizes arylsulfates, including p-nitrophenyl sulfate, as sulfate donors, and is not reactive with 3-phosphoadenosine-5'-phosphosulfate (PAPS). The enzyme possesses broad substrate specificity and is active with a variety of phenols, quinones and flavonoids, but does not utilize primary and secondary alcohols and sugars as substrates. Arylsulfotransferase tolerates the presence of 10 vol% of polar cosolvents (dimethyl formamide, acetonitrile, methanol), but loses significant activity at higher solvent concentrations of 30-40 vol%. The enzyme retains high arylsulfotransferase activity in biphasic systems composed of water and nonpolar solvents, such as cyclohexane, toluene and chloroform, while in biphasic systems with more polar solvents (ethyl acetate, 2-pentanone, methyl tert-butyl ether, and butyl acetate) the enzyme activity is completely lost. High yields of AST-catalyzed sulfation were achieved in reactions with several phenols and tyrosine-containing peptides. Overall, AST studied in this work is a promising biocatalyst in organic synthesis to afford efficient sulfation of phenolic compounds under mild reaction conditions.


Subject(s)
Arylsulfotransferase/biosynthesis , Arylsulfotransferase/chemistry , Clostridium/enzymology , Phenols/chemistry , Sulfates/chemistry , Animals , Arylsulfotransferase/classification , Arylsulfotransferase/isolation & purification , Catalysis , Cats , Cattle , Cell Line , Dogs , Enzyme Activation , Feces/microbiology , Humans , Rabbits , Sensitivity and Specificity , Sewage/microbiology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...