Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38745558

ABSTRACT

Arousal state is regulated by subcortical neuromodulatory nuclei, such as locus coeruleus, which send wide-reaching projections to cortex. Whether higher-order cortical regions have the capacity to recruit neuromodulatory systems to aid cognition is unclear. Here, we hypothesized that select cortical regions activate the arousal system, which, in turn, modulates large-scale brain activity, creating a functional circuit predicting cognitive ability. We utilized the Human Connectome Project 7T functional magnetic resonance imaging dataset (n = 149), acquired at rest with simultaneous eye tracking, along with extensive cognitive assessment for each subject. First, we discovered select frontoparietal cortical regions that drive large-scale spontaneous brain activity specifically via engaging the arousal system. Second, we show that the functionality of the arousal circuit driven by bilateral posterior cingulate cortex (associated with the default mode network) predicts subjects' cognitive abilities. This suggests that a cortical region that is typically associated with self-referential processing supports cognition by regulating the arousal system.


Subject(s)
Arousal , Brain , Cognition , Connectome , Magnetic Resonance Imaging , Rest , Humans , Arousal/physiology , Cognition/physiology , Male , Female , Connectome/methods , Adult , Rest/physiology , Brain/physiology , Brain/diagnostic imaging , Young Adult , Nerve Net/physiology , Nerve Net/diagnostic imaging , Neural Pathways/physiology , Neural Pathways/diagnostic imaging
2.
bioRxiv ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38617344

ABSTRACT

Arousal state is regulated by subcortical neuromodulatory nuclei, such as locus coeruleus, which send wide-reaching projections to cortex. Whether higher-order cortical regions have the capacity to recruit neuromodulatory systems to aid cognition is unclear. Here, we hypothesized that select cortical regions activate the arousal system, which in turn modulates large-scale brain activity, creating a functional circuit predicting cognitive ability. We utilized the Human Connectome Project 7T functional magnetic resonance imaging dataset (N=149), acquired at rest with simultaneous eye tracking, along with extensive cognitive assessment for each subject. First, we discovered select frontoparietal cortical regions that drive large-scale spontaneous brain activity specifically via engaging the arousal system. Second, we show that the functionality of the arousal circuit driven by bilateral posterior cingulate cortex (associated with the default mode network) predicts subjects' cognitive abilities. This suggests that a cortical region that is typically associated with self-referential processing supports cognition by regulating the arousal system.

4.
Neuroimage ; 278: 120300, 2023 09.
Article in English | MEDLINE | ID: mdl-37524170

ABSTRACT

Brain activity flow models estimate the movement of task-evoked activity over brain connections to help explain network-generated task functionality. Activity flow models have been shown to accurately generate task-evoked brain activations across a wide variety of brain regions and task conditions. However, these models have had limited explanatory power, given known issues with causal interpretations of the standard functional connectivity measures used to parameterize activity flow models. We show here that functional/effective connectivity (FC) measures grounded in causal principles facilitate mechanistic interpretation of activity flow models. We progress from simple to complex FC measures, with each adding algorithmic details reflecting causal principles. This reflects many neuroscientists' preference for reduced FC measure complexity (to minimize assumptions, minimize compute time, and fully comprehend and easily communicate methodological details), which potentially trades off with causal validity. We start with Pearson correlation (the current field standard) to remain maximally relevant to the field, estimating causal validity across a range of FC measures using simulations and empirical fMRI data. Finally, we apply causal-FC-based activity flow modeling to a dorsolateral prefrontal cortex region (DLPFC), demonstrating distributed causal network mechanisms contributing to its strong activation during a working memory task. Notably, this fully distributed model is able to account for DLPFC working memory effects traditionally thought to rely primarily on within-region (i.e., not distributed) recurrent processes. Together, these results reveal the promise of parameterizing activity flow models using causal FC methods to identify network mechanisms underlying cognitive computations in the human brain.


Subject(s)
Brain Mapping , Brain , Humans , Brain Mapping/methods , Brain/physiology , Memory, Short-Term/physiology , Magnetic Resonance Imaging/methods , Cognition
5.
STAR Protoc ; 3(1): 101094, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35128473

ABSTRACT

Traditional cognitive neuroscience uses task-evoked activations to map neurocognitive processes (and information) to brain regions; however, how those processes are generated is unknown. We developed activity flow mapping to identify and empirically validate network mechanisms underlying the generation of neurocognitive processes. This approach models the movement of task-evoked activity over brain connections to predict task-evoked activations. We present a protocol for using the Brain Activity Flow Toolbox (https://colelab.github.io/ActflowToolbox/) to identify network mechanisms underlying neurocognitive processes of interest. For complete details on the use and execution of this protocol, please refer to Cole et al., 2021.


Subject(s)
Brain Mapping , Brain , Brain/diagnostic imaging , Movement
6.
J Neurosci ; 41(12): 2684-2702, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33542083

ABSTRACT

Resting-state functional connectivity has provided substantial insight into intrinsic brain network organization, yet the functional importance of task-related change from that intrinsic network organization remains unclear. Indeed, such task-related changes are known to be small, suggesting they may have only minimal functional relevance. Alternatively, despite their small amplitude, these task-related changes may be essential for the ability of the human brain to adaptively alter its functionality via rapid changes in inter-regional relationships. We used activity flow mapping-an approach for building empirically derived network models-to quantify the functional importance of task-state functional connectivity (above and beyond resting-state functional connectivity) in shaping cognitive task activations in the (female and male) human brain. We found that task-state functional connectivity could be used to better predict independent fMRI activations across all 24 task conditions and all 360 cortical regions tested. Further, we found that prediction accuracy was strongly driven by individual-specific functional connectivity patterns, while functional connectivity patterns from other tasks (task-general functional connectivity) still improved predictions beyond resting-state functional connectivity. Additionally, since activity flow models simulate how task-evoked activations (which underlie behavior) are generated, these results may provide mechanistic insight into why prior studies found correlations between task-state functional connectivity and individual differences in behavior. These findings suggest that task-related changes to functional connections play an important role in dynamically reshaping brain network organization, shifting the flow of neural activity during task performance.SIGNIFICANCE STATEMENT Human cognition is highly dynamic, yet the functional network organization of the human brain is highly similar across rest and task states. We hypothesized that, despite this overall network stability, task-related changes from the intrinsic (resting-state) network organization of the brain strongly contribute to brain activations during cognitive task performance. Given that cognitive task activations emerge through network interactions, we leveraged connectivity-based models to predict independent cognitive task activations using resting-state versus task-state functional connectivity. This revealed that task-related changes in functional network organization increased prediction accuracy of cognitive task activations substantially, demonstrating their likely functional relevance for dynamic cognitive processes despite the small size of these task-related network changes.


Subject(s)
Brain/physiology , Cognition/physiology , Magnetic Resonance Imaging/methods , Nerve Net/physiology , Psychomotor Performance/physiology , Adult , Brain/diagnostic imaging , Female , Humans , Male , Nerve Net/diagnostic imaging , Young Adult
7.
J Cogn Neurosci ; 33(2): 180-194, 2021 02.
Article in English | MEDLINE | ID: mdl-32427070

ABSTRACT

Cognition and behavior emerge from brain network interactions, suggesting that causal interactions should be central to the study of brain function. Yet, approaches that characterize relationships among neural time series-functional connectivity (FC) methods-are dominated by methods that assess bivariate statistical associations rather than causal interactions. Such bivariate approaches result in substantial false positives because they do not account for confounders (common causes) among neural populations. A major reason for the dominance of methods such as bivariate Pearson correlation (with functional MRI) and coherence (with electrophysiological methods) may be their simplicity. Thus, we sought to identify an FC method that was both simple and improved causal inferences relative to the most popular methods. We started with partial correlation, showing with neural network simulations that this substantially improves causal inferences relative to bivariate correlation. However, the presence of colliders (common effects) in a network resulted in false positives with partial correlation, although this was not a problem for bivariate correlations. This led us to propose a new combined FC method (combinedFC) that incorporates simple bivariate and partial correlation FC measures to make more valid causal inferences than either alone. We release a toolbox for implementing this new combinedFC method to facilitate improvement of FC-based causal inferences. CombinedFC is a general method for FC and can be applied equally to resting-state and task-based paradigms.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Cognition , Humans , Neural Networks, Computer
8.
Nat Neurosci ; 22(11): 1751-1760, 2019 11.
Article in English | MEDLINE | ID: mdl-31611705

ABSTRACT

Cognition and behavior emerge from brain network interactions, such that investigating causal interactions should be central to the study of brain function. Approaches that characterize statistical associations among neural time series-functional connectivity (FC) methods-are likely a good starting point for estimating brain network interactions. Yet only a subset of FC methods ('effective connectivity') is explicitly designed to infer causal interactions from statistical associations. Here we incorporate best practices from diverse areas of FC research to illustrate how FC methods can be refined to improve inferences about neural mechanisms, with properties of causal neural interactions as a common ontology to facilitate cumulative progress across FC approaches. We further demonstrate how the most common FC measures (correlation and coherence) reduce the set of likely causal models, facilitating causal inferences despite major limitations. Alternative FC measures are suggested to immediately start improving causal inferences beyond these common FC measures.


Subject(s)
Brain/physiology , Functional Neuroimaging/methods , Models, Neurological , Neural Pathways/physiology , Animals , Humans , Validation Studies as Topic
9.
Netw Neurosci ; 3(2): 274-306, 2019.
Article in English | MEDLINE | ID: mdl-30793083

ABSTRACT

We test the adequacies of several proposed and two new statistical methods for recovering the causal structure of systems with feedback from synthetic BOLD time series. We compare an adaptation of the first correct method for recovering cyclic linear systems; Granger causal regression; a multivariate autoregressive model with a permutation test; the Group Iterative Multiple Model Estimation (GIMME) algorithm; the Ramsey et al. non-Gaussian methods; two non-Gaussian methods by Hyvärinen and Smith; a method due to Patel et al.; and the GlobalMIT algorithm. We introduce and also compare two new methods, Fast Adjacency Skewness (FASK) and Two-Step, both of which exploit non-Gaussian features of the BOLD signal. We give theoretical justifications for the latter two algorithms. Our test models include feedback structures with and without direct feedback (2-cycles), excitatory and inhibitory feedback, models using experimentally determined structural connectivities of macaques, and empirical human resting-state and task data. We find that averaged over all of our simulations, including those with 2-cycles, several of these methods have a better than 80% orientation precision (i.e., the probability of a directed edge is in the true structure given that a procedure estimates it to be so) and the two new methods also have better than 80% recall (probability of recovering an orientation in the true structure).

10.
Int J Data Sci Anal ; 3(2): 121-129, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28393106

ABSTRACT

We describe two modifications that parallelize and reorganize caching in the well-known Greedy Equivalence Search (GES) algorithm for discovering directed acyclic graphs on random variables from sample values. We apply one of these modifications, the Fast Greedy Search (FGS) assuming faithfulness, to an i.i.d. sample of 1,000 units to recover with high precision and good recall an average degree 2 directed acyclic graph (DAG) with one million Gaussian variables. We describe a modification of the algorithm to rapidly find the Markov Blanket of any variable in a high dimensional system. Using 51,000 voxels that parcellate an entire human cortex, we apply the FGS algorithm to Blood Oxygenation Level Dependent (BOLD) time series obtained from resting state fMRI.

11.
Proc IEEE Int Conf Data Min ; 2017: 913-918, 2017 Nov.
Article in English | MEDLINE | ID: mdl-31068766

ABSTRACT

We address two important issues in causal discovery from nonstationary or heterogeneous data, where parameters associated with a causal structure may change over time or across data sets. First, we investigate how to efficiently estimate the "driving force" of the nonstationarity of a causal mechanism. That is, given a causal mechanism that varies over time or across data sets and whose qualitative structure is known, we aim to extract from data a low-dimensional and interpretable representation of the main components of the changes. For this purpose we develop a novel kernel embedding of nonstationary conditional distributions that does not rely on sliding windows. Second, the embedding also leads to a measure of dependence between the changes of causal modules that can be used to determine the directions of many causal arrows. We demonstrate the power of our methods with experiments on both synthetic and real data.

12.
Neuroimage ; 84: 986-1006, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24099845

ABSTRACT

We consider several alternative ways of exploiting non-Gaussian distributional features, including some that can in principle identify direct, positive feedback relations (graphically, 2-cycles) and combinations of methods that can identify high dimensional graphs. All of the procedures are implemented in the TETRAD freeware (Ramsey et al., 2013). We show that in most cases the limited accuracy of the several non-Gaussian methods in the Smith et al. (2011) simulations can be attributed to the high-pass Butterworth filter used in that study. Without that filter, or with the filter in the widely used FSL program (Jenkinson et al., 2012), the directional accuracies of several of the non-Gaussian methods are at or near ceiling in many conditions of the Smith et al. simulation. We show that the improvement of an apparently Gaussian method (Patel et al., 2006) when filtering is removed is due to non-Gaussian features of that method introduced by the Smith et al. implementation. We also investigate some conditions in which multi-subject data help with causal structure identification using higher moments, notably with non-stationary time series or with 2-cycles. We illustrate the accuracy of the methods with more complex graphs with and without 2-cycles, and with a 500 node graph; to illustrate applicability and provide a further test we apply the methods to an empirical case for which aspects of the causal structure are known. Finally, we note a number of cautions and issues that remain to be investigated, and some outstanding problems for determining the structure of effective connections from fMRI data.


Subject(s)
Algorithms , Brain/physiology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Models, Neurological , Humans , Neural Pathways/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...