Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Mol Biol Evol ; 40(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37235753

ABSTRACT

Enzymes catalyze the chemical reactions of life. For nearly half of known enzymes, catalysis requires the binding of small molecules known as cofactors. Polypeptide-cofactor complexes likely formed at a primordial stage and became starting points for the evolution of many efficient enzymes. Yet, evolution has no foresight so the driver for the primordial complex formation is unknown. Here, we use a resurrected ancestral TIM-barrel protein to identify one potential driver. Heme binding at a flexible region of the ancestral structure yields a peroxidation catalyst with enhanced efficiency when compared to free heme. This enhancement, however, does not arise from protein-mediated promotion of catalysis. Rather, it reflects the protection of bound heme from common degradation processes and a resulting longer lifetime and higher effective concentration for the catalyst. Protection of catalytic cofactors by polypeptides emerges as a general mechanism to enhance catalysis and may have plausibly benefited primordial polypeptide-cofactor associations.


Subject(s)
Heme , Peptides , Catalysis
2.
bioRxiv ; 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36993774

ABSTRACT

Enzymes catalyze the chemical reactions of life. For nearly half of known enzymes, catalysis requires the binding of small molecules known as cofactors. Polypeptide-cofactor complexes likely formed at a primordial stage and became starting points for the evolution of many efficient enzymes. Yet, evolution has no foresight so the driver for the primordial complex formation is unknown. Here, we use a resurrected ancestral TIM-barrel protein to identify one potential driver. Heme binding at a flexible region of the ancestral structure yields a peroxidation catalyst with enhanced efficiency when compared to free heme. This enhancement, however, does not arise from protein-mediated promotion of catalysis. Rather, it reflects protection of bound heme from common degradation processes and a resulting longer life time and higher effective concentration for the catalyst. Protection of catalytic cofactors by polypeptides emerges as a general mechanism to enhance catalysis and may have plausibly benefited primordial polypeptide-cofactor associations.

3.
Anal Chem ; 95(12): 5323-5330, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36926836

ABSTRACT

Several mass spectrometry and spectroscopic techniques have been used in the search for molecular biomarkers on Mars. A major constraint is their capability to detect and identify large and complex compounds such as peptides or other biopolymers. Multiplex immunoassays can detect these compounds, but antibodies must be produced for a large number of sequence-dependent molecular targets. Ancestral Sequence Reconstruction (ASR) followed by protein "resurrection" in the lab can help to narrow the selection of targets. Herein, we propose an immunoanalytical method to identify ancient and universally conserved protein/peptide sequences as targets for identifying ancestral biomarkers in nature. We have developed, tested, and validated this approach by producing antibodies to eight previously described ancestral resurrected proteins (three ß-lactamases, three thioredoxins, one Elongation Factor Tu, and one RuBisCO, all of them theoretically dated as Precambrian), and used them as a proxy to search for any potential feature of them that could be present in current natural environments. By fluorescent sandwich microarray immunoassays (FSMI), we have detected positive immunoreactions with antibodies to the oldest ß-lactamase and thioredoxin proteins (ca. 4 Ga) in samples from a hydrothermal environment. Fine epitope mapping and inhibitory immunoassays allowed the identification of well-conserved epitope peptide sequences that resulted from ASR and were present in the sample. We corroborated these results by metagenomic sequencing and found several genes encoding analogue proteins with significant matches to the peptide epitopes identified with the antibodies. The results demonstrated that peptides inferred from ASR studies have true counterpart analogues in Nature, which validates and strengthens the well-known ASR/protein resurrection technique and our immunoanalytical approach for investigating ancient environments and metabolisms on Earth and elsewhere.


Subject(s)
Peptides , beta-Lactamases , Biomarkers , Antibodies , Epitope Mapping , Epitopes
4.
Mol Biol Evol ; 40(3)2023 03 04.
Article in English | MEDLINE | ID: mdl-36788592

ABSTRACT

Many metabolites are generated in one step of a biochemical pathway and consumed in a subsequent step. Such metabolic intermediates are often reactive molecules which, if allowed to freely diffuse in the intracellular milieu, could lead to undesirable side reactions and even become toxic to the cell. Therefore, metabolic intermediates are often protected as protein-bound species and directly transferred between enzyme active sites in multi-functional enzymes, multi-enzyme complexes, and metabolons. Sequestration of reactive metabolic intermediates thus contributes to metabolic efficiency. It is not known, however, whether this evolutionary adaptation can be relaxed in response to challenges to organismal survival. Here, we report evolutionary repair experiments on Escherichia coli cells in which an enzyme crucial for the biosynthesis of proline has been deleted. The deletion makes cells unable to grow in a culture medium lacking proline. Remarkably, however, cell growth is efficiently restored by many single mutations (12 at least) in the gene of glutamine synthetase. The mutations cause the leakage to the intracellular milieu of a highly reactive phosphorylated intermediate common to the biosynthetic pathways of glutamine and proline. This intermediate is generally assumed to exist only as a protein-bound species. Nevertheless, its diffusion upon mutation-induced leakage enables a new route to proline biosynthesis. Our results support that leakage of sequestered metabolic intermediates can readily occur and contribute to organismal adaptation in some scenarios. Enhanced availability of reactive molecules may enable the generation of new biochemical pathways and the potential of mutation-induced leakage in metabolic engineering is noted.


Subject(s)
Biological Evolution , Biosynthetic Pathways , Cell Survival , Mutation , Proline
5.
Int J Mol Sci ; 23(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36012203

ABSTRACT

The routine generation of enzymes with completely new active sites is a major unsolved problem in protein engineering. Advances in this field have thus far been modest, perhaps due, at least in part, to the widespread use of modern natural proteins as scaffolds for de novo engineering. Most modern proteins are highly evolved and specialized and, consequently, difficult to repurpose for completely new functionalities. Conceivably, resurrected ancestral proteins with the biophysical properties that promote evolvability, such as high stability and conformational diversity, could provide better scaffolds for de novo enzyme generation. Kemp elimination, a non-natural reaction that provides a simple model of proton abstraction from carbon, has been extensively used as a benchmark in de novo enzyme engineering. Here, we present an engineered ancestral ß-lactamase with a new active site that is capable of efficiently catalyzing Kemp elimination. The engineering of our Kemp eliminase involved minimalist design based on a single function-generating mutation, inclusion of an extra polypeptide segment at a position close to the de novo active site, and sharply focused, low-throughput library screening. Nevertheless, its catalytic parameters (kcat/KM~2·105 M-1 s-1, kcat~635 s-1) compare favorably with the average modern natural enzyme and match the best proton-abstraction de novo Kemp eliminases that are reported in the literature. The general implications of our results for de novo enzyme engineering are discussed.


Subject(s)
Protein Engineering , Protons , Catalysis , Catalytic Domain , beta-Lactamases/genetics
6.
Methods Mol Biol ; 2376: 105-116, 2022.
Article in English | MEDLINE | ID: mdl-34845605

ABSTRACT

Protein folding/unfolding processes involve a large number of weak, non-covalent interactions and are more appropriately described in terms of the movement of a point representing protein conformation in a plot of internal free energy versus conformational degrees of freedom. While these energy landscapes have an astronomically large number of dimensions, it has been shown that many relevant aspects of protein folding can be understood in terms of their projections onto a few relevant coordinates. Remarkably, such low-dimensional free energy surfaces can be obtained from experimental DSC data using suitable analytical models. Here, we describe the experimental procedures to be used to obtain the high-quality DSC data that are required for free-energy surface analysis.


Subject(s)
Calorimetry, Differential Scanning , Calorimetry , Protein Conformation , Protein Folding , Thermodynamics
7.
J Mol Biol ; 433(24): 167321, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34687715

ABSTRACT

Obligate symbionts typically exhibit high evolutionary rates. Consequently, their proteins may differ considerably from their modern and ancestral homologs in terms of both sequence and properties, thus providing excellent models to study protein evolution. Also, obligate symbionts are challenging to culture in the lab and proteins from uncultured organisms must be produced in heterologous hosts using recombinant DNA technology. Obligate symbionts thus replicate a fundamental scenario of metagenomics studies aimed at the functional characterization and biotechnological exploitation of proteins from the bacteria in soil. Here, we use the thioredoxin from Candidatus Photodesmus katoptron, an uncultured symbiont of flashlight fish, to explore evolutionary and engineering aspects of protein folding in heterologous hosts. The symbiont protein is a standard thioredoxin in terms of 3D-structure, stability and redox activity. However, its folding outside the original host is severely impaired, as shown by a very slow refolding in vitro and an inefficient expression in E. coli that leads mostly to insoluble protein. By contrast, resurrected Precambrian thioredoxins express efficiently in E. coli, plausibly reflecting an ancient adaptation to unassisted folding. We have used a statistical-mechanical model of the folding landscape to guide back-to-ancestor engineering of the symbiont protein. Remarkably, we find that the efficiency of heterologous expression correlates with the in vitro (i.e., unassisted) folding rate and that the ancestral expression efficiency can be achieved with only 1-2 back-to-ancestor replacements. These results demonstrate a minimal-perturbation, sequence-engineering approach to rescue inefficient heterologous expression which may potentially be useful in metagenomics efforts targeting recent adaptations.


Subject(s)
Bacterial Proteins/biosynthesis , Fishes/microbiology , Protein Folding , Recombinant Proteins/biosynthesis , Vibrionaceae/metabolism , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Escherichia coli/metabolism , Metagenomics , Protein Engineering , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Symbiosis , Thioredoxins/biosynthesis , Thioredoxins/chemistry , Vibrionaceae/genetics
8.
STAR Protoc ; 2(3): 100784, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34485945

ABSTRACT

A general protocol for the experimental assessment of bacteriophage adaptation to new hosts is described. We use as a model system the lytic phage T7 and an engineered E. coli strain modified to hamper the recruitment of a known proviral factor. Our protocol includes steps of phage amplification, plaque and liquid lysis assays, and DNA extraction for next-generation sequencing of the viral genome over several rounds of laboratory evolution thus allowing the investigation of the sequence determinants of viral adaptation. For complete information on the generation and use of this protocol, please refer to Luzon-Hidalgo et al. (2021).


Subject(s)
Bacteriophages/genetics , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing/methods , Host-Pathogen Interactions/genetics , Adaptation, Biological/genetics , Bacteriophage T7/genetics , Escherichia coli/genetics , Sequence Analysis, DNA , Virology/methods
9.
iScience ; 24(4): 102257, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33817569

ABSTRACT

Viruses interact extensively with the host molecular machinery, but the underlying mechanisms are poorly understood. Bacteriophage T7 recruits the small protein thioredoxin of the Escherichia coli host as an essential processivity factor for the viral DNA polymerase. We challenged the phage to propagate in a host in which thioredoxin had been extensively modified to hamper its recruitment. The virus adapted to the engineered host without losing the capability to propagate in the original host, but no genetic mutations were fixed in the thioredoxin binding domain of the viral DNA polymerase. Virus adaptation correlated with mutations in the viral RNA polymerase, supporting that promiscuous thioredoxin recruitment was enabled by phenotypic mutations caused by transcription errors. These results point to a mechanism of virus adaptation that may play a role in cross-species transmission. We propose that phenotypic mutations may generally contribute to the capability of viruses to evade antiviral strategies.

10.
Nat Commun ; 12(1): 1852, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33767175

ABSTRACT

TEM-1 ß-lactamase degrades ß-lactam antibiotics with a strong preference for penicillins. Sequence reconstruction studies indicate that it evolved from ancestral enzymes that degraded a variety of ß-lactam antibiotics with moderate efficiency. This generalist to specialist conversion involved more than 100 mutational changes, but conserved fold and catalytic residues, suggesting a role for dynamics in enzyme evolution. Here, we develop a conformational dynamics computational approach to rationally mold a protein flexibility profile on the basis of a hinge-shift mechanism. By deliberately weighting and altering the conformational dynamics of a putative Precambrian ß-lactamase, we engineer enzyme specificity that mimics the modern TEM-1 ß-lactamase with only 21 amino acid replacements. Our conformational dynamics design thus re-enacts the evolutionary process and provides a rational allosteric approach for manipulating function while conserving the enzyme active site.


Subject(s)
beta-Lactamases/genetics , beta-Lactamases/metabolism , Amino Acid Sequence/genetics , Catalytic Domain/genetics , Computational Biology , Escherichia coli/drug effects , Escherichia coli/enzymology , Evolution, Molecular , Molecular Dynamics Simulation , Penicillins/metabolism , Protein Conformation , Substrate Specificity
11.
Nat Commun ; 12(1): 380, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33452262

ABSTRACT

Glycosidases are phylogenetically widely distributed enzymes that are crucial for the cleavage of glycosidic bonds. Here, we present the exceptional properties of a putative ancestor of bacterial and eukaryotic family-1 glycosidases. The ancestral protein shares the TIM-barrel fold with its modern descendants but displays large regions with greatly enhanced conformational flexibility. Yet, the barrel core remains comparatively rigid and the ancestral glycosidase activity is stable, with an optimum temperature within the experimental range for thermophilic family-1 glycosidases. None of the ∼5500 reported crystallographic structures of ∼1400 modern glycosidases show a bound porphyrin. Remarkably, the ancestral glycosidase binds heme tightly and stoichiometrically at a well-defined buried site. Heme binding rigidifies this TIM-barrel and allosterically enhances catalysis. Our work demonstrates the capability of ancestral protein reconstructions to reveal valuable but unexpected biomolecular features when sampling distant sequence space. The potential of the ancestral glycosidase as a scaffold for custom catalysis and biosensor engineering is discussed.


Subject(s)
Bacteria/enzymology , Eukaryota/enzymology , Glycoside Hydrolases/metabolism , Heme/metabolism , Allosteric Regulation , Amino Acid Sequence/genetics , Bacteria/genetics , Crystallography, X-Ray , Eukaryota/genetics , Glycoside Hydrolases/genetics , Glycoside Hydrolases/ultrastructure , Molecular Dynamics Simulation , Phylogeny , Protein Structure, Secondary , Sequence Homology, Amino Acid
13.
Chem Sci ; 11(24): 6134-6148, 2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32832059

ABSTRACT

Directed evolution has revolutionized protein engineering. Still, enzyme optimization by random library screening remains sluggish, in large part due to futile probing of mutations that are catalytically neutral and/or impair stability and folding. FuncLib is a novel approach which uses phylogenetic analysis and Rosetta design to rank enzyme variants with multiple mutations, on the basis of predicted stability. Here, we use it to target the active site region of a minimalist-designed, de novo Kemp eliminase. The similarity between the Michaelis complex and transition state for the enzymatic reaction makes this system particularly challenging to optimize. Yet, experimental screening of a small number of active-site variants at the top of the predicted stability ranking leads to catalytic efficiencies and turnover numbers (∼2 × 104 M-1 s-1 and ∼102 s-1) for this anthropogenic reaction that compare favorably to those of modern natural enzymes. This result illustrates the promise of FuncLib as a powerful tool with which to speed up directed evolution, even on scaffolds that were not originally evolved for those functions, by guiding screening to regions of the sequence space that encode stable and catalytically diverse enzymes. Empirical valence bond calculations reproduce the experimental activation energies for the optimized eliminases to within ∼2 kcal mol-1 and indicate that the enhanced activity is linked to better geometric preorganization of the active site. This raises the possibility of further enhancing the stability-guidance of FuncLib by computational predictions of catalytic activity, as a generalized approach for computational enzyme design.

14.
Appl Environ Microbiol ; 86(14)2020 07 02.
Article in English | MEDLINE | ID: mdl-32414792

ABSTRACT

Ancestral sequence reconstruction and resurrection provides useful information for protein engineering, yet its alliance with directed evolution has been little explored. In this study, we have resurrected several ancestral nodes of fungal laccases dating back ∼500 to 250 million years. Unlike modern laccases, the resurrected Mesozoic laccases were readily secreted by yeast, with similar kinetic parameters, a broader stability, and distinct pH activity profiles. The resurrected Agaricomycetes laccase carried 136 ancestral mutations, a molecular testimony to its origin, and it was subjected to directed evolution in order to improve the rate of 1,3-cyclopentanedione oxidation, a ß-diketone initiator commonly used in vinyl polymerization reactions.IMPORTANCE The broad variety of biotechnological uses of fungal laccases is beyond doubt (food, textiles, pulp and paper, pharma, biofuels, cosmetics, and bioremediation), and protein engineering (in particular, directed evolution) has become the key driver for adaptation of these enzymes to harsh industrial conditions. Usually, the first requirement for directed laccase evolution is heterologous expression, which presents an important hurdle and often a time-consuming process. In this work, we resurrected a fungal Mesozoic laccase node which showed strikingly high heterologous expression and pH stability. As a proof of concept that the ancestral laccase is a suitable blueprint for engineering, we performed a quick directed evolution campaign geared to the oxidation of the ß-diketone 1,3-cyclopentanedione, a poor laccase substrate that is used in the polymerization of vinyl monomers.


Subject(s)
Evolution, Molecular , Fungi/genetics , Laccase/genetics , Fungi/enzymology , Mycology , Paleontology
15.
Article in English | MEDLINE | ID: mdl-32435637

ABSTRACT

Among the broad repertory of protein engineering methods that set out to improve stability, consensus design has proved to be a powerful strategy to stabilize enzymes without compromising their catalytic activity. Here, we have applied an in-house consensus method to stabilize a laboratory evolved high-redox potential laccase. Multiple sequence alignments were carried out and computationally refined by applying relative entropy and mutual information thresholds. Through this approach, an ensemble of 20 consensus mutations were identified, 18 of which were consensus/ancestral mutations. The set of consensus variants was produced in Saccharomyces cerevisiae and analyzed individually, while site directed recombination of the best mutations did not produce positive epistasis. The best single variant carried the consensus-ancestral A240G mutation in the neighborhood of the T2/T3 copper cluster, which dramatically improved thermostability, kinetic parameters and secretion.

16.
Nat Commun ; 10(1): 5703, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31836707

ABSTRACT

The macromolecular machines of life use allosteric control to self-assemble, dissociate and change shape in response to signals. Despite enormous interest, the design of nanoscale allosteric assemblies has proven tremendously challenging. Here we present a proof of concept of allosteric assembly in which an engineered fold switch on the protein monomer triggers or blocks assembly. Our design is based on the hyper-stable, naturally monomeric protein CI2, a paradigm of simple two-state folding, and the toroidal arrangement with 6-fold symmetry that it only adopts in crystalline form. We engineer CI2 to enable a switch between the native and an alternate, latent fold that self-assembles onto hexagonal toroidal particles by exposing a favorable inter-monomer interface. The assembly is controlled on demand via the competing effects of temperature and a designed short peptide. These findings unveil a remarkable potential for structural metamorphosis in proteins and demonstrate key principles for engineering protein-based nanomachinery.


Subject(s)
Protein Engineering/methods , Protein Folding , Protein Multimerization/genetics , Proteins/metabolism , Serine Proteinase Inhibitors/metabolism , Allosteric Regulation , Cloning, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Protein Structure, Secondary/genetics , Proteins/genetics , Proteins/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Serine Proteases/metabolism , Serine Proteinase Inhibitors/genetics , Serine Proteinase Inhibitors/isolation & purification
17.
Biochem J ; 476(23): 3631-3647, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31750876

ABSTRACT

Evolution involves not only adaptation, but also the degradation of superfluous features. Many examples of degradation at the morphological level are known (vestigial organs, for instance). However, the impact of degradation on molecular evolution has been rarely addressed. Thioredoxins serve as general oxidoreductases in all cells. Here, we report extensive mutational analyses on the folding of modern and resurrected ancestral bacterial thioredoxins. Contrary to claims from recent literature, in vitro folding rates in the thioredoxin family are not evolutionarily conserved, but span at least a ∼100-fold range. Furthermore, modern thioredoxin folding is often substantially slower than ancestral thioredoxin folding. Unassisted folding, as probed in vitro, thus emerges as an ancestral vestigial feature that underwent degradation, plausibly upon the evolutionary emergence of efficient cellular folding assistance. More generally, our results provide evidence that degradation of ancestral features shapes, not only morphological evolution, but also the evolution of individual proteins.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Evolution, Molecular , Protein Unfolding , Proteolysis , Thioredoxins/chemistry , Amino Acid Sequence , Catalytic Domain , Escherichia coli Proteins/genetics , Escherichia coli Proteins/isolation & purification , Kinetics , Mutation , Phylogeny , Protein Engineering , Thioredoxins/genetics , Thioredoxins/isolation & purification
18.
J R Soc Interface ; 15(144)2018 07.
Article in English | MEDLINE | ID: mdl-30021929

ABSTRACT

Enzymes are dynamic entities, and their dynamic properties are clearly linked to their biological function. It follows that dynamics ought to play an essential role in enzyme evolution. Indeed, a link between conformational diversity and the emergence of new enzyme functionalities has been recognized for many years. However, it is only recently that state-of-the-art computational and experimental approaches are revealing the crucial molecular details of this link. Specifically, evolutionary trajectories leading to functional optimization for a given host environment or to the emergence of a new function typically involve enriching catalytically competent conformations and/or the freezing out of non-competent conformations of an enzyme. In some cases, these evolutionary changes are achieved through distant mutations that shift the protein ensemble towards productive conformations. Multifunctional intermediates in evolutionary trajectories are probably multi-conformational, i.e. able to switch between different overall conformations, each competent for a given function. Conformational diversity can assist the emergence of a completely new active site through a single mutation by facilitating transition-state binding. We propose that this mechanism may have played a role in the emergence of enzymes at the primordial, progenote stage, where it was plausibly promoted by high environmental temperatures and the possibility of additional phenotypic mutations.


Subject(s)
Enzymes/genetics , Evolution, Molecular , Models, Genetic , Mutation , Catalysis , Catalytic Domain , Enzymes/metabolism
19.
Curr Opin Struct Biol ; 51: 106-115, 2018 08.
Article in English | MEDLINE | ID: mdl-29660672

ABSTRACT

Approximations to the sequences of ancestral proteins can be derived from the sequences of their modern descendants. Proteins encoded by such reconstructed sequences can be prepared in the laboratory and subjected to experimental scrutiny. These 'resurrected' ancestral proteins often display remarkable properties, reflecting ancestral adaptations to intra-cellular and extra-cellular environments that differed from the environments hosting modern/extant proteins. Recent experimental and computational work has specifically discussed high stability, substrate and catalytic promiscuity, conformational flexibility/diversity and altered patterns of interaction with other sub-cellular components. In this review, we discuss these remarkable properties as well as recent attempts to explore their biotechnological and protein-engineering potential.


Subject(s)
Biotechnology , Protein Engineering , Proteins/chemistry , Proteins/metabolism , Enzyme Activation , Evolution, Molecular , Intracellular Space , Models, Molecular , Protein Binding , Protein Conformation , Protein Stability , Proteins/genetics
20.
Sci Rep ; 8(1): 5532, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29615759

ABSTRACT

Rubisco is an ancient, catalytically conserved yet slow enzyme, which plays a central role in the biosphere's carbon cycle. The design of Rubiscos to increase agricultural productivity has hitherto relied on the use of in vivo selection systems, precluding the exploration of biochemical traits that are not wired to cell survival. We present a directed -in vitro- evolution platform that extracts the enzyme from its biological context to provide a new avenue for Rubisco engineering. Precambrian and extant form II Rubiscos were subjected to an ensemble of directed evolution strategies aimed at improving thermostability. The most recent ancestor of proteobacteria -dating back 2.4 billion years- was uniquely tolerant to mutagenic loading. Adaptive evolution, focused evolution and genetic drift revealed a panel of thermostable mutants, some deviating from the characteristic trade-offs in CO2-fixing speed and specificity. Our findings provide a novel approach for identifying Rubisco variants with improved catalytic evolution potential.


Subject(s)
Directed Molecular Evolution , Rhodospirillum/enzymology , Ribulose-Bisphosphate Carboxylase/metabolism , Amino Acid Sequence , Carbon Dioxide/metabolism , Kinetics , Models, Molecular , Phylogeny , Protein Conformation , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL
...