Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Ginekol Pol ; 95(2): 108-113, 2024.
Article in English | MEDLINE | ID: mdl-37842994

ABSTRACT

OBJECTIVES: We focused our study on examining the genotype and allele frequency of IL-6 (rs1800795), TNF-α (rs1800629) and IL-10 (rs1800872) single nucleotide polymorphisms (SNP) on preeclampsia (PE) diagnosed Mexican pregnant women. MATERIAL AND METHODS: A case-control study was designed including 86 preeclampsia patients and 100 normotensives pregnancies from Women's Hospital of Culiacan, Mexico. Genotyping of IL-6, TNF-α and IL-10 was performed using TaqMan SNP Genotyping. RESULTS: Not significant association was found between development of PE and genotypic (p > 0.05) and allelic (p > 0.05) frequencies of IL-6, TNF-α and IL-10 SNPs. Genotype distributions of IL-6 (p = 0.599), TNF-α (p = 0.721) and IL-10 (p = 0.761) polymorphisms in the two groups were in agreement with Hardy-Weinberg equilibrium. CONCLUSIONS: According to the findings, the IL-6, TNF-α and IL-10 SNPs are not exponents of susceptibility to developing PE.


Subject(s)
Interleukin-10 , Pre-Eclampsia , Female , Humans , Pregnancy , Case-Control Studies , Gene Frequency , Genetic Predisposition to Disease , Genotype , Interleukin-10/genetics , Interleukin-6/genetics , Mexico , Polymorphism, Single Nucleotide , Pre-Eclampsia/genetics , Tumor Necrosis Factor-alpha/genetics
2.
NPJ Vaccines ; 8(1): 163, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37884538

ABSTRACT

Adjuvants can enhance vaccine immunogenicity, but their mechanism of action is often incompletely understood, hampering rapid applicability for pandemic vaccines. Herein, we characterized the cellular and molecular activity of adjuvant formulations available for pre-clinical evaluation, including several developed for global open access. We applied four complementary human in vitro platforms to assess individual and combined adjuvants in unformulated, oil-in-water, and liposomal delivery platforms. Liposomal co-formulation of MPLA and QS-21 was most potent in promoting dendritic cell maturation, selective production of Th1-polarizing cytokines, and activation of SARS-CoV-2 Spike-specific CD4+ and CD8+ T cells in a co-culture assay. Select formulations also significantly enhanced Spike antigen-specific humoral immunity in vivo. This study confirms the utility of the cumulative use of human in vitro tools to predict adjuvanticity potential. Thus, human in vitro modeling may advance public health by accelerating the development of affordable and scalable adjuvants for vaccines tailored to vulnerable populations.

3.
J Gastrointest Oncol ; 14(4): 1735-1745, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37720443

ABSTRACT

Background: Colorectal cancer (CRC) is a leading cause of death worldwide. SRY-box transcription factor 9 (SOX9) participates in organogenesis and cell differentiation in normal tissues but has been involved in carcinogenesis development. Cancer stem cells (CSCs) are a small population of cells present in solid tumors that contribute to increased tumor heterogeneity, metastasis, chemoresistance, and relapse. CSCs have properties such as self-renewal and differentiation, which can be modulated by many factors. Currently, the role of SOX9 in the maintenance of the stem phenotype has not been well elucidated, thus, in this work we evaluated the effect of the absence of SOX9 in the stem phenotype of CRC cells. Methods: We knockout (KO) SOX9 in the undifferentiated CRC cell line HCT116 and evaluated their stemness properties using sphere formation assay, differentiation assay, and immunophenotyping. Results: SOX9-KO affected the epithelial morphology of HCT116 cells and stemness characteristics such as its pluripotency signature with the increase of SOX2 as a compensatory mechanism to induce SOX9 expression, the increase of KLF4 as a differentiation feature, as well as the inhibition of the stem cell markers CD44 and CD73. In addition, SOX9-KO cells gain the epithelial-mesenchymal transition (EMT) phenotype with a significant upregulation of CDH2. Furthermore, our results showed a remarkable effect on first- and second-sphere formation, being SOX9-KO cells less capable of forming high-size-resistant spheres. Nevertheless, CSCs surface markers were not affected during the differentiation assay. Conclusions: Collectively, our findings supply evidence that SOX9 promotes the maintenance of stemness properties in CRC-CSCs.

4.
Biomed Mater Eng ; 34(4): 331-344, 2023.
Article in English | MEDLINE | ID: mdl-37125540

ABSTRACT

BACKGROUND: The necessity to manufacture scaffolds with superior capabilities of biocompatibility and biodegradability has led to the production of extracellular matrix (ECM) scaffolds. Among their advantages, they allow better cell colonization, which enables its successful integration into the hosted tissue, surrounding the area to be repaired and their formulations facilitate placing it into irregular shapes. The ECM from porcine urinary bladder (pUBM) comprises proteins, proteoglycans and glycosaminoglycans which provide support and enable signals to the cells. These properties make it an excellent option to produce hydrogels that can be used in regenerative medicine. OBJECTIVE: The goal of this study was to assess the biocompatibility of an ECM hydrogel derived from the porcine urinary bladder (pUBMh) in vitro using fibroblasts, macrophages, and adipose-derived mesenchymal stem cells (AD-MCSs), as well as biocompatibility in vivo using Wistar rats. METHODS: Effects upon cells proliferation/viability was measured using MTT assay, cytotoxic effects were analyzed by quantifying lactate dehydrogenase release and the Live/Dead Cell Imaging assay. Macrophage activation was assessed by quantification of IL-6, IL-10, IL-12p70, MCP-1, and TNF-α using a microsphere-based cytometric bead array. For in vivo analysis, Wistar rats were inoculated into the dorsal sub-dermis with pUBMh. The specimens were sacrificed at 24 h after inoculation for histological study. RESULTS: The pUBMh obtained showed good consistency and absence of cell debris. The biocompatibility tests in vitro revealed that the pUBMh promoted cell proliferation and it is not cytotoxic on the three tested cell lines and induces the production of pro-inflammatory cytokines on macrophages, mainly TNF-α and MCP-1. In vivo, pUBMh exhibited fibroblast-like cell recruitment, without tissue damage or inflammation. CONCLUSION: The results show that pUBMh allows cell proliferation without cytotoxic effects and can be considered an excellent biomaterial for tissue engineering.


Subject(s)
Hydrogels , Tissue Engineering , Rats , Swine , Animals , Tissue Engineering/methods , Hydrogels/pharmacology , Tissue Scaffolds , Urinary Bladder , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Extracellular Matrix
5.
Front Immunol ; 13: 1043375, 2022.
Article in English | MEDLINE | ID: mdl-36426360

ABSTRACT

A single birth-dose of Hepatitis B vaccine (HepB) can protect newborns from acquiring Hepatitis B infection through vertical transmission, though several follow-up doses are required to induce long-lived protection. In addition to stimulating antibodies, a birth-dose of HepB might also induce polyfunctional CD4+ T-cells, which may contribute to initial protection. We investigated whether vaccination with HepB in the first week of life induced detectable antigen-specific CD4+ T-cells after only a single dose and following completion of the entire HepB vaccine schedule (3 doses). Using HBsAg- stimulated peripheral blood mononuclear cells from 344 infants, we detected increased populations of antigen-specific polyfunctional CD154+IL-2+TNFα+ CD4+ T-cells following a single birth-dose of HepB in a proportion of infants. Frequencies of polyfunctional T-cells increased following the completion of the HepB schedule but increases in the proportion of responders as compared to following only one dose was marginal. Polyfunctional T-cells correlated positively with serum antibody titres following the birth dose (day30) and completion of the 3-dose primary HepB vaccine series (day 128). These data indicate that a single birth dose of HepB provides immune priming for both antigen-specific B- and T cells.


Subject(s)
Hepatitis B Vaccines , Leukocytes, Mononuclear , Infant , Infant, Newborn , Humans , T-Lymphocytes, Helper-Inducer , CD4-Positive T-Lymphocytes
6.
Res Sq ; 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36597547

ABSTRACT

mRNA vaccines have been key to addressing the SARS-CoV-2 pandemic but have impaired immunogenicity and durability in vulnerable older populations. We evaluated the mRNA vaccine BNT162b2 in human in vitro whole blood assays with supernatants from adult (18-50 years) and elder (≥60 years) participants measured by mass spectrometry and proximity extension assay proteomics. BNT162b2 induced increased expression of soluble proteins in adult blood (e.g., C1S, PSMC6, CPN1), but demonstrated reduced proteins in elder blood (e.g., TPM4, APOF, APOC2, CPN1, and PI16), including 30-85% lower induction of TH1-polarizing cytokines and chemokines (e.g., IFNγ, and CXCL10). Elder TH1 impairment was validated in mice in vivo and associated with impaired humoral and cellular immunogenicity. Our study demonstrates the utility of a human in vitro platform to model age-specific mRNA vaccine activity, highlights impaired TH1 immunogenicity in older adults, and provides rationale for developing enhanced mRNA vaccines with greater immunogenicity in vulnerable populations.

7.
Front Immunol ; 12: 674334, 2021.
Article in English | MEDLINE | ID: mdl-34326836

ABSTRACT

Background: Newborns exhibit distinct immune responses and are at high risk of infection. Neonatal immunization with BCG, the live attenuated vaccine against tuberculosis (TB), is associated with broad protection against a range of unrelated pathogens, possibly reflecting vaccine-induced training of innate immune cells ("innate memory"). However, little is known regarding the impact of age on BCG-induced innate responses. Objective: Establish an age-specific human monocyte in vitro training platform to characterize and compare BCG-induced primary and memory cytokine responses and immunometabolic shifts. Design/Methods: Human neonatal and adult CD33-selected monocytes were stimulated for 24h with RPMI (control) or BCG (Danish strain) in 10% autologous serum, washed and cultured for 5 additional days, prior to re-stimulation with the TLR4 agonist LPS for another 24h. Supernatants were collected at Day 1 (D1) to measure primary innate responses and at Day 7 (D7) to assess memory innate responses by ELISA and multiplex cytokine and chemokine assays. Lactate, a signature metabolite increased during trained immunity, was measured by colorimetric assay. Results: Cytokine production by human monocytes differed significantly by age at D1 (primary, BCG 1:750 and 1:100 vol/vol, p<0.0001) and D7 (innate memory response, BCG 1:100 vol/vol, p<0.05). Compared to RPMI control, newborn monocytes demonstrated greater TNF (1:100, 1:10 vol/vol, p<0.01) and IL-12p40 (1:100 vol/vol, p<0.05) production than adult monocytes (1:100, p<0.05). At D7, while BCG-trained adult monocytes, as previously reported, demonstrated enhanced LPS-induced TNF production, BCG-trained newborn monocytes demonstrated tolerization, as evidenced by significantly diminished subsequent LPS-induced TNF (RPMI vs. BCG 1:10, p <0.01), IL-10 and CCL5 production (p<0.05). With the exception of IL-1RA production by newborn monocytes, BCG-induced monocyte production of D1 cytokines/chemokines was inversely correlated with D7 LPS-induced TNF in both age groups (p<0.0001). Compared to BCG-trained adult monocytes, newborn monocytes demonstrated markedly impaired BCG-induced production of lactate, a metabolite implicated in immune training in adults. Conclusions: BCG-induced human monocyte primary- and memory-innate cytokine responses were age-dependent and accompanied by distinct immunometabolic shifts that impact both glycolysis and training. Our results suggest that immune ontogeny may shape innate responses to live attenuated vaccines, suggesting age-specific approaches to leverage innate training for broad protection against infection.


Subject(s)
Activation, Metabolic/immunology , BCG Vaccine/immunology , Cytokines/immunology , Immunity, Innate/immunology , Monocytes/immunology , Activation, Metabolic/drug effects , Humans , Immunologic Memory/immunology , Infant, Newborn
9.
Sci Rep ; 10(1): 17836, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33082466

ABSTRACT

Infections are most frequent at the extremes of life, especially among newborns, reflecting age-specific differences in immunity. Monocytes maintain tissue-homeostasis and defence-readiness by escaping circulation in the absence of inflammation to become tissue-resident antigen presenting cells in vivo. Despite equivalent circulating levels, neonates demonstrate lower presence of monocytes inside peripheral tissues as compared to adults. To study the ability of monocytes to undergo autonomous transendothelial extravasation under biologically accurate circumstances we engineered a three-dimensional human vascular-interstitial model including collagen, fibronectin, primary endothelial cells and autologous untreated plasma. This microphysiological tissue construct enabled age-specific autonomous extravasation of monocytes through a confluent human endothelium in the absence of exogenous chemokines and activation. Both CD16- and CD16+ newborn monocytes demonstrated lower adherence and extravasation as compared to adults. In contrast, pre-activated tissue constructs were colonized by newborn monocytes at the same frequency than adult monocytes, suggesting that neonatal monocytes are capable of colonizing inflamed tissues. The presence of autologous plasma neither improved newborn homeostatic extravasation nor shaped age-specific differences in endothelial cytokines that could account for this impairment. Newborn monocytes demonstrated significantly lower surface expression of CD31 and CD11b, and mechanistic experiments using blocking antibodies confirmed a functional role for CD31 and CD54 in neonatal homeostatic extravasation. Our data suggests that newborn monocytes are intrinsically impaired in extravasation through quiescent endothelia, a phenomenon that could contribute to the divergent immune responsiveness to vaccines and susceptibility to infection observed during early life.


Subject(s)
Cell Movement , Endothelium, Vascular/metabolism , Homeostasis , Models, Biological , Monocytes/cytology , Adult , Cell Adhesion , Endothelium, Vascular/cytology , Humans , Immunity, Innate , Immunophenotyping , Infant, Newborn , Inflammation/metabolism , Monocytes/immunology
10.
Sci Rep ; 10(1): 14045, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32820185

ABSTRACT

More than 98% of the human genome is made up of non-coding DNA, but techniques to ascertain its contribution to human disease have lagged far behind our understanding of protein coding variations. Autism spectrum disorder (ASD) has been mostly associated with coding variations via de novo single nucleotide variants (SNVs), recessive/homozygous SNVs, or de novo copy number variants (CNVs); however, most ASD cases continue to lack a genetic diagnosis. We analyzed 187 consanguineous ASD families for biallelic CNVs. Recessive deletions were significantly enriched in affected individuals relative to their unaffected siblings (17% versus 4%, p < 0.001). Only a small subset of biallelic deletions were predicted to result in coding exon disruption. In contrast, biallelic deletions in individuals with ASD were enriched for overlap with regulatory regions, with 23/28 CNVs disrupting histone peaks in ENCODE (p < 0.009). Overlap with regulatory regions was further demonstrated by comparisons to the 127-epigenome dataset released by the Roadmap Epigenomics project, with enrichment for enhancers found in primary brain tissue and neuronal progenitor cells. Our results suggest a novel noncoding mechanism of ASD, describe a powerful method to identify important noncoding regions in the human genome, and emphasize the potential significance of gene activation and regulation in cognitive and social function.


Subject(s)
Autism Spectrum Disorder/genetics , Epigenesis, Genetic , Gene Deletion , Homozygote , DNA Copy Number Variations , Female , Genetic Predisposition to Disease , Humans , Male
11.
Front Pediatr ; 8: 197, 2020.
Article in English | MEDLINE | ID: mdl-32426309

ABSTRACT

Background: Infection contributes to significant morbidity and mortality particularly in the very young and in low- and middle-income countries. While vaccines are a highly cost-effective tool against infectious disease little is known regarding the cellular and molecular pathways by which vaccines induce protection at an early age. Immunity is distinct in early life and greater precision is required in our understanding of mechanisms of early life protection to inform development of new pediatric vaccines. Methods and Analysis: We will apply transcriptomic, proteomic, metabolomic, multiplex cytokine/chemokine, adenosine deaminase, and flow cytometry immune cell phenotyping to delineate early cellular and molecular signatures that correspond to vaccine immunogenicity. This approach will be applied to a neonatal cohort in The Gambia (N ~ 720) receiving at birth: (1) Hepatitis B (HepB) vaccine alone, (2) Bacille Calmette Guerin (BCG) vaccine alone, or (3) HepB and BCG vaccines, (4) HepB and BCG vaccines delayed till day 10 at the latest. Each study participant will have a baseline peripheral blood sample drawn at DOL0 and a second blood sample at DOL1,-3, or-7 as well as late timepoints to assess HepB vaccine immunogenicity. Blood will be fractionated via a "small sample big data" standard operating procedure that enables multiple downstream systems biology assays. We will apply both univariate and multivariate frameworks and multi-OMIC data integration to identify features associated with anti-Hepatitis B (anti-HB) titer, an established correlate of protection. Cord blood sample collection from a subset of participants will enable human in vitro modeling to test mechanistic hypotheses identified in silico regarding vaccine action. Maternal anti-HB titer and the infant microbiome will also be correlated with our findings which will be validated in a smaller cohort in Papua New Guinea (N ~ 80). Ethics and Dissemination: The study has been approved by The Gambia Government/MRCG Joint Ethics Committee and The Boston Children's Hospital Institutional Review Board. Ethics review is ongoing with the Papua New Guinea Medical Research Advisory Committee. All de-identified data will be uploaded to public repositories following submission of study output for publication. Feedback meetings will be organized to disseminate output to the study communities. Clinical Trial Registration: Clinicaltrials.gov Registration Number: NCT03246230.

12.
Vaccine ; 38(9): 2229-2240, 2020 02 24.
Article in English | MEDLINE | ID: mdl-32005538

ABSTRACT

BACKGROUND: Bacille Calmette-Guérin (BCG), the live attenuated tuberculosis vaccine, is manufactured under different conditions across the globe generating formulations that may differ in clinical efficacy. Innate immune recognition of live BCG contributes to immunogenicity suggesting that differences in BCG viability may contribute to divergent activity of licensed formulations. METHODS: We compared BCG-Denmark (DEN), -Japan (JPN), -India (IND), -Bulgaria (BUL) and -USA in vitro with respect to a) viability as measured by colony-forming units (CFU), mycobacterial membrane integrity, and RNA content, and b) cytokine/chemokine production in newborn cord and adult peripheral blood. RESULTS: Upon culture, relative growth was BCG-USA > JPN â‰« DEN > BUL = IND. BCG-IND and -BUL demonstrated >1000-fold lower growth than BCG-JPN in 7H9 medium and >10-fold lower growth in commercial Middlebrook 7H11 medium. BCG-IND demonstrated significantly decreased membrane integrity, lower RNA content, and weaker IFN-γ inducing activity in whole blood compared to other BCGs. BCG-induced whole blood cytokines differed significantly by age, vaccine formulation and concentration. BCG-induced cytokine production correlated with CFU, suggesting that mycobacterial viability may contribute to BCG-induced immune responses. CONCLUSIONS: Licensed BCG vaccines differ markedly in their content of viable mycobacteria possibly contributing to formulation-dependent activation of innate and adaptive immunity and distinct protective effects.


Subject(s)
BCG Vaccine/immunology , Immunogenicity, Vaccine , Microbial Viability , RNA, Bacterial/analysis , Adult , BCG Vaccine/genetics , Bulgaria , Denmark , Humans , Immunity, Innate , India , Infant, Newborn , Japan , Mycobacterium bovis/immunology , United States
13.
Front Pediatr ; 7: 340, 2019.
Article in English | MEDLINE | ID: mdl-31456998

ABSTRACT

Neonatal sepsis remains a major health issue worldwide, especially for low-birth weight and premature infants, with a high risk of death and devastating sequelae. Apart from antibiotics and supportive care, there is an unmet need for adjunctive treatments to improve the outcomes of neonatal sepsis. Strong and long-standing research on adult patients has shown that vascular endothelium is a key player in the pathophysiology of sepsis and sepsis-associated organ failure, through a direct interaction with pathogens, leukocytes, platelets, and the effect of soluble circulating mediators, in part produced by endothelial cells themselves. Despite abundant evidence that the neonatal immune response to sepsis is distinct from that of adults, comparable knowledge on neonatal vascular endothelium is much more limited. Neonatal endothelial cells express lower amounts of adhesion molecules compared to adult ones, and present a reduced capacity to neutralize reactive oxygen species. Conversely, available evidence on biomarkers of endothelial damage in neonates is not as robust as in adult patients, and endothelium-targeted therapeutic opportunities for neonatal sepsis are almost unexplored. Here, we summarize current knowledge on the structure of neonatal vascular endothelium, its interactions with neonatal immune system and possible endothelium-targeted diagnostic and therapeutic tools for neonatal sepsis. Furthermore, we outline areas of basic and translational research worthy of further study, to shed light on the role of vascular endothelium in the context of neonatal sepsis.

14.
Nat Commun ; 10(1): 1092, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30862783

ABSTRACT

Systems biology can unravel complex biology but has not been extensively applied to human newborns, a group highly vulnerable to a wide range of diseases. We optimized methods to extract transcriptomic, proteomic, metabolomic, cytokine/chemokine, and single cell immune phenotyping data from <1 ml of blood, a volume readily obtained from newborns. Indexing to baseline and applying innovative integrative computational methods reveals dramatic changes along a remarkably stable developmental trajectory over the first week of life. This is most evident in changes of interferon and complement pathways, as well as neutrophil-associated signaling. Validated across two independent cohorts of newborns from West Africa and Australasia, a robust and common trajectory emerges, suggesting a purposeful rather than random developmental path. Systems biology and innovative data integration can provide fresh insights into the molecular ontogeny of the first week of life, a dynamic developmental phase that is key for health and disease.


Subject(s)
Child Development/physiology , Infant, Newborn/blood , Infant, Newborn/immunology , Chemokines/blood , Cohort Studies , Cytokines/blood , Gambia , Gene Expression Profiling , Humans , Immunophenotyping , Metabolomics , Papua New Guinea , Proteomics , Systems Biology
15.
Front Immunol ; 9: 2634, 2018.
Article in English | MEDLINE | ID: mdl-30524426

ABSTRACT

Current vaccine development disregards human immune ontogeny, relying on animal models to select vaccine candidates targeting human infants, who are at greatest risk of infection worldwide, and receive the largest number of vaccines. To help accelerate and de-risk development of early-life effective immunization, we engineered a human age-specific microphysiologic vascular-interstitial interphase, suitable for pre-clinical modeling of distinct age-targeted immunity in vitro. Our Tissue Constructs (TCs) enable autonomous extravasation of monocytes that undergo rapid self-directed differentiation into migratory Dendritic Cells (DCs) in response to adjuvants and licensed vaccines such as Bacille Calmette-Guérin (BCG) or Hepatitis B virus Vaccine (HBV). TCs contain a confluent human endothelium grown atop a tri-dimensional human extracellular matrix substrate, employ human age-specific monocytes and autologous non heat-treated plasma, and avoid the use of xenogenic materials and exogenous cytokines. Vaccine-pulsed TCs autonomously generated DCs that induced single-antigen recall responses from autologous naïve and memory CD4+ T lymphocytes, matching study participant immune-status, including BCG responses paralleling donor PPD status, BCG-induced adenosine deaminase (ADA) activity paralleling infant cohorts in vivo, and multi-dose HBV antigen-specific responses as demonstrated by lymphoproliferation and TCR sequencing. Overall, our microphysiologic culture method reproduced age- and antigen-specific recall responses to BCG and HBV immunization, closely resembling those observed after a birth immunization of human cohorts in vivo, offering for the first time a new approach to early pre-clinical selection of effective age-targeted vaccine candidates.


Subject(s)
Aging/immunology , BCG Vaccine/immunology , CD4-Positive T-Lymphocytes/metabolism , Dendritic Cells/immunology , Hepatitis B Vaccines/immunology , Monocytes/immunology , Adjuvants, Immunologic , Adult , Female , Humans , Immunization , Immunologic Memory , Infant, Newborn , Male , Middle Aged , Tissue Culture Techniques
16.
Biomed Res Int ; 2018: 4898153, 2018.
Article in English | MEDLINE | ID: mdl-29546061

ABSTRACT

Diabetes mellitus (DM) is a metabolic disease characterized by persistent high levels of glucose in plasma. Chronic hyperglycemia is thought to increase oxidative stress and the formation of free radicals that in turn damage cells. Thus, we decided to determine the frequency of nuclear abnormalities in epithelial cells from cheek and tongue mucosa of DM patients with type 1 (DM1, treated only with insulin) and type 2 (DM2, treated with metformin) using the buccal micronucleus cytome (BMCyt) assay. Micronuclei frequency in cheek epithelial cells was higher in both DM1 (0.75 ± 0.31, P < 0.001) and DM2 (0.52 ± 0.27, P < 0.001) patients, as compared to healthy controls (0.07 ± 0.06). Similarly, micronuclei frequency in tongue epithelium was increased in DM1 (0.81 ± 0.22, P < 0.001) and DM2 (0.41 ± 0.21, P < 0.001) groups, in comparison to controls (0.06 ± 0.05). Besides, we found a positive correlation between micronuclei frequency and the onset time of DM2 in both cheek (ρ = 0.69, P < 0.001) and tongue epithelial cells (ρ = 0.71, P < 0.001), but not with onset time of DM1 or age of the patients. Considering all this, we pose that BMCyt could serve as a fast and easily accessible test to assess genotoxic damage during dental visits of DM patients, helping to monitor their disease.


Subject(s)
Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 2/diagnosis , Epithelium/metabolism , Mouth Mucosa/metabolism , Cheek/pathology , DNA Damage/drug effects , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Epithelium/pathology , Female , Humans , Insulin/therapeutic use , Male , Metformin/therapeutic use , Micronucleus Tests/methods , Middle Aged , Mouth Mucosa/pathology , Oxidative Stress/drug effects , Tongue/metabolism , Tongue/pathology
17.
J Allergy Clin Immunol ; 140(5): 1339-1350, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28343701

ABSTRACT

BACKGROUND: Newborns display distinct immune responses, leaving them vulnerable to infections and impairing immunization. Targeting newborn dendritic cells (DCs), which integrate vaccine signals into adaptive immune responses, might enable development of age-specific vaccine formulations to overcome suboptimal immunization. OBJECTIVE: Small-molecule imidazoquinoline Toll-like receptor (TLR) 8 agonists robustly activate newborn DCs but can result in reactogenicity when delivered in soluble form. We used rational engineering and age- and species-specific modeling to construct and characterize polymer nanocarriers encapsulating a TLR8 agonist, allowing direct intracellular release after selective uptake by DCs. METHODS: Chemically similar but morphologically distinct nanocarriers comprised of amphiphilic block copolymers were engineered for targeted uptake by murine DCs in vivo, and a range of TLR8 agonist-encapsulating polymersome formulations were then synthesized. Novel 96-well in vitro assays using neonatal human monocyte-derived DCs and humanized TLR8 mouse bone marrow-derived DCs enabled benchmarking of the TLR8 agonist-encapsulating polymersome formulations against conventional adjuvants and licensed vaccines, including live attenuated BCG vaccine. Immunogenicity of the TLR8 agonist adjuvanted antigen 85B (Ag85B)/peptide 25-loaded BCG-mimicking nanoparticle formulation was evaluated in vivo by using humanized TLR8 neonatal mice. RESULTS: Although alum-adjuvanted vaccines induced modest costimulatory molecule expression, limited TH-polarizing cytokine production, and significant cell death, BCG induced a robust adult-like maturation profile of neonatal DCs. Remarkably, TLR8 agonist polymersomes induced not only newborn DC maturation profiles similar to those induced by BCG but also stronger IL-12p70 production. On subcutaneous injection to neonatal mice, the TLR8 agonist-adjuvanted Ag85B peptide 25 formulation was comparable with BCG in inducing Ag85B-specific CD4+ T-cell numbers. CONCLUSION: TLR8 agonist-encapsulating polymersomes hold substantial potential for early-life immunization against intracellular pathogens. Overall, our study represents a novel approach for rational design of early-life vaccines.


Subject(s)
Adjuvants, Immunologic/administration & dosage , BCG Vaccine/immunology , Dendritic Cells/immunology , Imidazoles/administration & dosage , Monocytes/immunology , Nanoparticles/administration & dosage , Quinolines/administration & dosage , Adaptive Immunity , Animals , Animals, Newborn , Biomimetics , CD4-Positive T-Lymphocytes/immunology , Cells, Cultured , Cytokines/metabolism , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Immunity, Innate , Immunomodulation , Infant, Newborn , Mice , Mice, Inbred C57BL , Mice, SCID , Nanoparticles/chemistry , Polymers/chemistry , Quinolines/chemistry , Quinolines/pharmacology , Toll-Like Receptor 8/agonists , Vaccination
18.
Ann Hum Genet ; 81(1): 35-40, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28025823

ABSTRACT

Despite the use of multidrug therapy, leprosy remains endemic in some countries. The association of several human leucocyte antigen (HLA) alleles and gene polymorphisms with leprosy has been demonstrated in many populations, but the major immune contributors associated to the spectrum of leprosy have not been defined yet. In this study, genotyping of HLA-A, -B, -DR, and -DQ alleles was performed in leprosy patients (n = 113) and control subjects (n = 117) from the region with the highest incidence for the disease in México. The odds of developing leprosy and lepromatous subtype were 2.12- and 2.74-fold higher in carriers of HLA-A*28, and 2.48- and 4.14-fold higher for leprosy and dimorphic subtype in carriers of DQB1*06. Interestingly, DQB1*07 was overrepresented in healthy individuals, compared to patients with leprosy (OR = 0.08) and the lepromatous subtype (OR = 0.06). These results suggest that HLA-A*28 is a marker for predisposition to leprosy and the lepromatous subtype and DQB1*06 to leprosy and the dimorphic subtype, while DQB1*07 might be a resistance marker in this Mestizo population.


Subject(s)
HLA Antigens/genetics , Indians, North American/genetics , Leprosy/genetics , Adult , Aged , Alleles , Case-Control Studies , Female , Gene Frequency , Genetic Association Studies , Genetic Markers , Genetic Predisposition to Disease , Humans , Male , Mexico , Middle Aged , Polymorphism, Genetic
19.
Int J Genomics ; 2014: 302568, 2014.
Article in English | MEDLINE | ID: mdl-25506053

ABSTRACT

Intervertebral disc degeneration (IDD) is the most common diagnosis in patients with back pain, a leading cause of musculoskeletal disability worldwide. Several conditions, such as occupational activities, gender, age, and obesity, have been associated with IDD. However, the development of this disease has strong genetic determinants. In this study, we explore the possible association between rs1800587 (c.-949C>T) of interleukin-1 alpha (IL1A) and rs2228570 (c.2T>V) and rs731236 (c.1056T>C) of vitamin D receptor (VDR) gene polymorphisms and the development of IDD in northwestern Mexican Mestizo population. Gene polymorphisms were analyzed by polymerase chain reaction followed by restriction fragment length polymorphism, in two groups matched by age and gender: patients with symptomatic lumbar IDD (n = 100) and subjects with normal lumbar-spine MRI-scans (n = 100). Distribution of the mutated alleles in patients and controls was 27.0% versus 28.0% (P = 0.455) for T of rs1800587 (IL1A); 53.0% versus 58.0% (P = 0.183) for V of rs2228570 (VDR); and 18.0% versus 21.0% (P = 0.262) for C of rs731236 (VDR). Our results showed no association between the studied polymorphisms and IDD in this population. This is the first report on the contribution of gene polymorphisms on IDD in a Mexican population.

20.
Sci Transl Med ; 3(90): 90ps27, 2011 Jul 06.
Article in English | MEDLINE | ID: mdl-21734174

ABSTRACT

Vaccines for early-life immunization are a crucial biomedical intervention to reduce global morbidity and mortality, yet their developmental path has been largely ad hoc, empiric, and inconsistent. Immune responses of human newborns and infants are distinct and cannot be predicted from those of human adults or animal models. Therefore, understanding and modeling age-specific human immune responses will be vital to the rational design and development of safe and effective vaccines for newborns and infants.


Subject(s)
Immune System/immunology , Infant, Newborn/immunology , Vaccines/immunology , Adult , Animals , Child, Preschool , Communicable Disease Control , Humans , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...