Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cereb Cortex ; 13(11): 1219-31, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14576213

ABSTRACT

Local cortical networks in the prefrontal cortex and visual cortex are capable of spontaneously generating sustained activity for periods of seconds or longer. This sustained activity is generated through recurrent excitation between pyramidal cells that is controlled by feedback inhibition and can have both a rapid onset and a rapid offset. The period of activity is associated with a marked increase in neuronal responsiveness to the intracellular injection of current pulses, especially those of smaller amplitude. Independently mimicking the depolarization, increase in membrane conductance and increase in noise associated with sustained activity revealed that the depolarization is largely responsible for the increase in neuronal responsiveness, although an increase in membrane noise also facilitates responses to small inputs. These results indicate that the persistent activity associated with the performance of working memory tasks may be generated largely through recurrent networks. They also suggest that feedback pathways, such as those involved in selective attention, may exert a powerful influence on neuronal responsiveness through synaptic bombardment.


Subject(s)
Action Potentials/physiology , Prefrontal Cortex/physiology , Pyramidal Cells/physiology , Animals , Female , Ferrets , In Vitro Techniques , Male , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...