Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 355(6324): 503-507, 2017 02 03.
Article in English | MEDLINE | ID: mdl-28104795

ABSTRACT

Two-dimensional (2D) materials offer a promising platform for exploring condensed matter phenomena and developing technological applications. However, the reduction of material dimensions to the atomic scale poses a challenge for traditional measurement and interfacing techniques that typically couple to macroscopic observables. We demonstrate a method for probing the properties of 2D materials via nanometer-scale nuclear quadrupole resonance (NQR) spectroscopy using individual atomlike impurities in diamond. Coherent manipulation of shallow nitrogen-vacancy (NV) color centers enables the probing of nanoscale ensembles down to approximately 30 nuclear spins in atomically thin hexagonal boron nitride (h-BN). The characterization of low-dimensional nanoscale materials could enable the development of new quantum hybrid systems, combining atomlike systems coherently coupled with individual atoms in 2D materials.

2.
Phys Rev Lett ; 117(11): 116804, 2016 Sep 09.
Article in English | MEDLINE | ID: mdl-27661712

ABSTRACT

Twisted bilayer graphene (TBLG) is one of the simplest van der Waals heterostructures, yet it yields a complex electronic system with intricate interplay between moiré physics and interlayer hybridization effects. We report on electronic transport measurements of high mobility small angle TBLG devices showing clear evidence for insulating states at the superlattice band edges, with thermal activation gaps several times larger than theoretically predicted. Moreover, Shubnikov-de Haas oscillations and tight binding calculations reveal that the band structure consists of two intersecting Fermi contours whose crossing points are effectively unhybridized. We attribute this to exponentially suppressed interlayer hopping amplitudes for momentum transfers larger than the moiré wave vector.

3.
Nature ; 505(7484): 528-32, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24362569

ABSTRACT

Low-dimensional electronic systems have traditionally been obtained by electrostatically confining electrons, either in heterostructures or in intrinsically nanoscale materials such as single molecules, nanowires and graphene. Recently, a new method has emerged with the recognition that symmetry-protected topological (SPT) phases, which occur in systems with an energy gap to quasiparticle excitations (such as insulators or superconductors), can host robust surface states that remain gapless as long as the relevant global symmetry remains unbroken. The nature of the charge carriers in SPT surface states is intimately tied to the symmetry of the bulk, resulting in one- and two-dimensional electronic systems with novel properties. For example, time reversal symmetry endows the massless charge carriers on the surface of a three-dimensional topological insulator with helicity, fixing the orientation of their spin relative to their momentum. Weakly breaking this symmetry generates a gap on the surface, resulting in charge carriers with finite effective mass and exotic spin textures. Analogous manipulations have yet to be demonstrated in two-dimensional topological insulators, where the primary example of a SPT phase is the quantum spin Hall state. Here we demonstrate experimentally that charge-neutral monolayer graphene has a quantum spin Hall state when it is subjected to a very large magnetic field angled with respect to the graphene plane. In contrast to time-reversal-symmetric systems, this state is protected by a symmetry of planar spin rotations that emerges as electron spins in a half-filled Landau level are polarized by the large magnetic field. The properties of the resulting helical edge states can be modulated by balancing the applied field against an intrinsic antiferromagnetic instability, which tends to spontaneously break the spin-rotation symmetry. In the resulting canted antiferromagnetic state, we observe transport signatures of gapped edge states, which constitute a new kind of one-dimensional electronic system with a tunable bandgap and an associated spin texture.

4.
Science ; 340(6139): 1427-30, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23686343

ABSTRACT

van der Waals heterostructures constitute a new class of artificial materials formed by stacking atomically thin planar crystals. We demonstrated band structure engineering in a van der Waals heterostructure composed of a monolayer graphene flake coupled to a rotationally aligned hexagonal boron nitride substrate. The spatially varying interlayer atomic registry results in both a local breaking of the carbon sublattice symmetry and a long-range moiré superlattice potential in the graphene. In our samples, this interplay between short- and long-wavelength effects resulted in a band structure described by isolated superlattice minibands and an unexpectedly large band gap at charge neutrality. This picture is confirmed by our observation of fractional quantum Hall states at ± 5/3 filling and features associated with the Hofstadter butterfly at ultrahigh magnetic fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...