Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 109(4): 587-600, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35196516

ABSTRACT

Covalent tRNA modifications play multi-faceted roles in tRNA stability, folding, and recognition, as well as the rate and fidelity of translation, and other cellular processes such as growth, development, and stress responses. Mutations in genes that are known to regulate tRNA modifications lead to a wide array of phenotypes and diseases including numerous cognitive and neurodevelopmental disorders, highlighting the critical role of tRNA modification in human disease. One such gene, THUMPD1, is involved in regulating tRNA N4-acetylcytidine modification (ac4C), and recently was proposed as a candidate gene for autosomal-recessive intellectual disability. Here, we present 13 individuals from 8 families who harbor rare loss-of-function variants in THUMPD1. Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism, and ophthalmological abnormalities. We demonstrate that the bi-allelic variants identified cause loss of function of THUMPD1 and that this defect results in a loss of ac4C modification in small RNAs, and of individually purified tRNA-Ser-CGA. We further corroborate this effect by showing a loss of tRNA acetylation in two CRISPR-Cas9-generated THUMPD1 KO cell lines. In addition, we also show the resultant amino acid substitution that occurs in a missense THUMPD1 allele identified in an individual with compound heterozygous variants results in a marked decrease in THUMPD1 stability and RNA-binding capacity. Taken together, these results suggest that the lack of tRNA acetylation due to THUMPD1 loss of function results in a syndromic form of intellectual disability associated with developmental delay, behavioral abnormalities, hearing loss, and facial dysmorphism.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , RNA-Binding Proteins , Acetylation , Alleles , Humans , Intellectual Disability/genetics , Intellectual Disability/metabolism , Mutation/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , RNA/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
2.
Am J Med Genet A ; 188(2): 692-707, 2022 02.
Article in English | MEDLINE | ID: mdl-34665525

ABSTRACT

Koolen-de Vries syndrome (KdVS) is a rare genetic disorder caused by a de novo microdeletion in chromosomal region 17q21.31 encompassing KANSL1 or by a de novo intragenic pathogenic variant of KANSL1. KdVS is typically characterized by intellectual disability (ID), variable from mild to severe, developmental psychomotor delay, especially of expressive language development, friendly disposition, and multiple systemic abnormalities. So far, most of the individuals affected by KdVS are diagnosed in infancy or in adolescence; to the best of our knowledge, only 34 (including ours) adults have been reported in literature. Here we present the adult phenotype of a 63-year-old Italian woman affected by KdVS, caused by a 17q21.31 microdeletion. She is, to our knowledge, the oldest affected individual reported so far. We collected her clinical history and photographs, as well as those of other 26 adult patients described so far and compared her to them. We propose that the cardinal features of KdVS in adulthood are ID (ranging from mild to severe, usually moderate), friendly behavior, musculoskeletal abnormalities (especially scoliosis), and facial dysmorphism (a long face and a pronounced pear-shape nose with bulbous overhanging nasal tip). Therefore, we suggest considering KdVS in differential diagnosis in adult patients characterized by these features.


Subject(s)
Intellectual Disability , Abnormalities, Multiple , Adult , Chromosome Deletion , Chromosomes, Human, Pair 17 , Female , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Nuclear Proteins/genetics , Phenotype
4.
J Cardiovasc Dev Dis ; 8(9)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34564127

ABSTRACT

Left ventricular noncompaction (LVNC) is a structural abnormality of the left ventricle, usually described as an isolated condition, or sometimes associated with other structural cardiac diseases. LVNC is generally asymptomatic, although it may present conduction disorders, arrhythmias, and heart failure. Here, we present the case of a patient who came to our attention with a severe LVNC phenotype associated with advanced AV conduction disorder, and supraventricular and ventricular arrhythmias at young age, in which a novel MIB1, likely pathogenic, variation has been identified.

SELECTION OF CITATIONS
SEARCH DETAIL
...