Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(23)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34885272

ABSTRACT

In the present work, a simple soft chemistry method was employed to prepare cobalt mixed oxide (Co3O4) materials, which have shown remarkably high activity in the heterogeneously catalyzed total oxidation of low reactive VOCs such as the light alkanes propane, ethane, and methane. The optimal heat-treatment temperature of the catalysts was shown to depend on the reactivity of the alkane studied. The catalytic activity of the Co3O4 catalysts was found to be as high as that of the most effective catalysts based on noble metals. The physicochemical properties, from either the bulk (using XRD, TPR, TPD-O2, and TEM) or the surface (using XPS), of the catalysts were investigated to correlate the properties with the catalytic performance in the total oxidation of VOCs. The presence of S1 low-coordinated oxygen species at the near surface of the Co3O4-based catalysts appeared to be linked with the higher reducibility of the catalysts and, consequently, with the higher catalytic activity, not only per mass of catalyst but also per surface area (enhanced areal rate). The co-presence of propane and methane in the feed at low reaction temperatures did not negatively affect the propane reactivity. However, the co-presence of propane and methane in the feed at higher reaction temperatures negatively affected the methane reactivity.

2.
RSC Adv ; 10(35): 20395-20404, 2020 May 27.
Article in English | MEDLINE | ID: mdl-35517762

ABSTRACT

In the present article, γ-valerolactone has been obtained from levulinic acid with a yield exceeding 25% using very mild conditions without feeding hydrogen (30 °C, atmospheric pressure, water as the hydrogen source). The overall reaction conducted is a two-step process: first, a redox reaction involving the oxidation of metallic Zn to ZnO for in situ hydrogen production through the water splitting reaction and, second, a catalytic reaction involving Ni-supported catalysts for the production of γ-valerolactone from levulinic acid. Ni active sites have been supported on sepiolite, an abundant and cheap material. The nickel particle size has been demonstrated to be a parameter of paramount importance determining the catalytic activity, since the best catalytic performance is obtained with the smallest Ni nanoparticles. This combination of Zn and Ni supported on sepiolite shows a good catalytic stability after three catalytic runs.

3.
Materials (Basel) ; 12(18)2019 Sep 09.
Article in English | MEDLINE | ID: mdl-31505854

ABSTRACT

Different nickel catalysts have been tested for the transformation of levulinic acid into γ-valerolactone using an easy hydrothermal method, taking advantage of the properties of the high temperature water. A metallic nickel catalyst derived from NiO synthesized by a nanocasting procedure can achieve a productivity to γ-valerolactone, which is two orders of magnitude higher than that obtained by a commercial nickel catalyst. This nanocasted metallic nickel catalyst has shown bifunctionality as it is capable of activating water as the source for hydrogen and undertaking the further hydrogenation step. In contrast with metallic nickel, nickel oxide has shown to be incapable of transforming levulinic acid into γ-valerolactone.

4.
Chemosphere ; 219: 286-295, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30543964

ABSTRACT

Ferric chloride solutions are used as coagulants or flocculants in water treatment operations for human consumption. This treatment produces large amounts of clay-type solids formed mainly of montmorillonite with iron oxides and humic substances. This ferric sludge can be used as an efficient catalyst for the removal of volatile organic compounds (VOCs) by total oxidation. This waste isolated in the purification process has been activated by calcinations in air, characterized by several physicochemical techniques and employed as a catalyst for the removal by total oxidation of representative VOCs: toluene, propane and mixtures of toluene/propane with or without water. This ferric sludge has shown a catalytic activity one order of magnitude higher than that of a commercial iron oxide. This high activity has been related to the composition of the sludge (as it contains active metal oxides such as oxides of iron and manganese) and to the porous structure (leading to a reasonably high surface area). Moreover, it can be also used as a support for platinum, showing comparable (or even higher) catalytic activity than a similar platinum catalyst supported on conventional γ-alumina. This work presents a double environmental perspective since the material employed as a catalyst is a waste sludge and the catalytic reaction studied deals about the elimination of pollutants.


Subject(s)
Sewage/chemistry , Volatile Organic Compounds/isolation & purification , Water Purification/methods , Catalysis , Ferric Compounds/chemistry , Oxidation-Reduction , Platinum/chemistry , Volatile Organic Compounds/chemistry
5.
Materials (Basel) ; 11(8)2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30096865

ABSTRACT

Iron oxides (FeOx) are non-toxic, non-expensive and environmentally friendly compounds, which makes them good candidates for many industrial applications, among them catalysis. In the present article five catalysts based on FeOx were synthesized by mild routes: hydrothermal in subcritical and supercritical conditions (Fe-HT, Few200, Few450) and solvothermal (Fe-ST1 and Fe-ST2). The catalytic activity of these catalysts was studied for the total oxidation of toluene using very demanding conditions with high space velocities and including water and CO2 in the feed. The samples were characterized by X-ray diffraction (XRD), scanning and high-resolution transmission electron microscopy (SEM and HRTEM), X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption-desorption isotherms. It was observed that the most active catalyst was a cavity-containing porous sample prepared by a solvothermal method with a relatively high surface area (55 m² g-1) and constituted by flower-like aggregates with open cavities at the catalyst surface. This catalyst displayed superior performance (100% of toluene conversion at 325 °C using highly demanding conditions) and this performance can be maintained for several catalytic cycles. Interestingly, the porous iron oxides present not only a higher catalytic activity than the non-porous but also a higher specific activity per surface area. The high activity of this catalyst has been related to the possible synergistic effect of compositional, structural and microstructural features emphasizing the role of the surface area, the crystalline phase present, and the properties of the surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...