Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13469, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866846

ABSTRACT

Caudofoveata are molluscs that protect their vermiform body with a scleritome, a mosaic of unconnected blade/lanceolate-shaped aragonite sclerites. For the species Falcidens gutturosus and Scutopus ventrolineatus we studied the crystallographic constitution and crystal orientation texture of the sclerites and the scleritome with electron-backscatter-diffraction (EBSD), laser-confocal-microscopy (LCM) and field-emission electron microscopy (FE-SEM) imaging. Each sclerite is an aragonite single crystal that is completely enveloped by an organic sheath. Adjacent sclerites overlap laterally and vertically are, however, not connected to each other. Sclerites are thickened in their central portion, relative to their periphery. Thickening increases also from sclerite tip towards its base. Accordingly, cross-sections through a sclerite are straight at its tip, curved and bent towards the sclerite base. Irrespective of curved sclerite morphologies, the aragonite lattice within the sclerite is coherent. Sclerite aragonite is not twinned. For each sclerite the crystallographic c-axis is parallel to the morphological long axis of the sclerite, the a-axis is perpendicular to its width and the b-axis is within the width of the sclerite. The single-crystalinity of the sclerites and their mode of organization in the scleritome is outstanding. Sclerite and aragonite arrangement in the scleritome is not given by a specific crystal growth mode, it is inherent to the secreting cells. We discuss that morphological characteristics of the sclerites and crystallographic preferred orientation (texture) of sclerite aragonite is not the result of competitive growth selection. It is generated by the templating effect of the organic substance of the secreting cells and associated extracellular biopolymers.


Subject(s)
Animal Shells , Calcium Carbonate , Mollusca , Animals , Animal Shells/chemistry , Animal Shells/ultrastructure , Mollusca/chemistry , Calcium Carbonate/chemistry , Crystallography , Microscopy, Electron, Scanning
2.
Environ Technol ; : 1-13, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488117

ABSTRACT

The main chemical components of waste cow bones are apatite minerals, especially those containing calcium and phosphorus. This study investigated whether this bone could produce extracted hydroxyapatite through calcining at 900° C for different holding times (1-6 h). An average mass loss of 45% occurred in this experiment during the preparation of bone powders, which involved crushing and further calcining at this temperature. The quantitative XRD analysis showed that 99.97 wt.% hydroxyapatite and over 0.3 wt.% calcite were present in the raw and as-calcined bone powders, with trace amounts of CaFe3O5 (calcium ferrite) phases appearing in the calcined product. Depending on the holding calcining times, SEM images of the calcined bovine powders revealed aggregate sizes ranging from 0.5-3 µm and crystallite (grain) sizes ranging from 70 to 340 nm in all calcium-phosphate powder products. Following EDX analysis of all sample surfaces, possible calcium-deficient hydroxyapatite instead of hydroxyapatite formed, as evidenced by the calcined product's Ca/P ratio exceeding 1.67. Additionally, calcining cow bones for 5-6 h at 900° C yielded a high-purity nano-crystalline hydroxyapatite powder precursor in biomedical applications.

3.
Environ Technol ; 45(12): 2375-2387, 2024 May.
Article in English | MEDLINE | ID: mdl-36695167

ABSTRACT

ABSTRACTThis study presents the use of a low-temperature hydrothermal method for extracting calcium sources from green mussel shell (P. Viridis) wastes and converting them into synthetic nanosized hydroxyapatite (HA). In this study, raw mussel shells were washed, pulverised, and sieved to start producing a fine calcium carbonate-rich powder. XRD quantitative analysis confirmed that the powder contains 97.6 wt. % aragonite. This powder was then calcined for 5 h at 900 °C to remove water, salt, and mud, yielding a calcium-rich feedstock with major minerals of calcite (68.7 wt.%), portlandite (24.7 wt.%), and minor aragonite (6.5 wt.%). The calcined powders were dissolved in aqueous stock solutions of HNO3 and NH4OH before hydrothermally reacting with phosphoric acid [(NH4)2HPO4], yielding pure, nanoscale (16-18 nm) carbonated HA crystals, according to XRD, FT-IR, and SEM analyses. The use of a low-temperature hydrothermal method for a feedstock powder produced by the calcination of low-cost mussel shell wastes would be a valuable processing approach for the industry's development of large-scale hydroxyapatite nanoparticle production.


Subject(s)
Durapatite , Perna , Animals , Perna/chemistry , Calcium , Temperature , Spectroscopy, Fourier Transform Infrared , Powders , Calcium Carbonate/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...