Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Astron ; 8(4): 504-519, 2024.
Article in English | MEDLINE | ID: mdl-38659610

ABSTRACT

Dust associated with various stellar sources in galaxies at all cosmic epochs remains a controversial topic, particularly whether supernovae play an important role in dust production. We report evidence of dust formation in the cold, dense shell behind the ejecta-circumstellar medium (CSM) interaction in the Type Ia-CSM supernova (SN) 2018evt three years after the explosion, characterized by a rise in mid-infrared emission accompanied by an accelerated decline in the optical radiation of the SN. Such a dust-formation picture is also corroborated by the concurrent evolution of the profiles of the Hα emission line. Our model suggests enhanced CSM dust concentration at increasing distances from the SN as compared to what can be expected from the density profile of the mass loss from a steady stellar wind. By the time of the last mid-infrared observations at day +1,041, a total amount of 1.2 ± 0.2 × 10-2 M⊙ of new dust has been formed by SN 2018evt, making SN 2018evt one of the most prolific dust factories among supernovae with evidence of dust formation. The unprecedented witness of the intense production procedure of dust may shed light on the perceptions of dust formation in cosmic history.

2.
Nature ; 612(7939): 223-227, 2022 12.
Article in English | MEDLINE | ID: mdl-36477128

ABSTRACT

Gamma-ray bursts (GRBs) are divided into two populations1,2; long GRBs that derive from the core collapse of massive stars (for example, ref. 3) and short GRBs that form in the merger of two compact objects4,5. Although it is common to divide the two populations at a gamma-ray duration of 2 s, classification based on duration does not always map to the progenitor. Notably, GRBs with short (≲2 s) spikes of prompt gamma-ray emission followed by prolonged, spectrally softer extended emission (EE-SGRBs) have been suggested to arise from compact object mergers6-8. Compact object mergers are of great astrophysical importance as the only confirmed site of rapid neutron capture (r-process) nucleosynthesis, observed in the form of so-called kilonovae9-14. Here we report the discovery of a possible kilonova associated with the nearby (350 Mpc), minute-duration GRB 211211A. The kilonova implies that the progenitor is a compact object merger, suggesting that GRBs with long, complex light curves can be spawned from merger events. The kilonova of GRB 211211A has a similar luminosity, duration and colour to that which accompanied the gravitational wave (GW)-detected binary neutron star (BNS) merger GW170817 (ref. 4). Further searches for GW signals coincident with long GRBs are a promising route for future multi-messenger astronomy.


Subject(s)
Dwarfism , Osteochondrodysplasias , Stars, Celestial , Humans , Astronomy , Gravitation
3.
Opt Lett ; 37(20): 4227-9, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-23073419

ABSTRACT

We report the generation of continuous phase masks designed to generate a set of target diffraction orders with defined relative intensity weights. We apply a previously reported analytic calculation that requires resolving a single equation with a set of parameters defining the target diffraction orders. Then the same phase map is extended to other phase patterns such as vortex generating/sensing gratings. Results are demonstrated experimentally with a parallel-aligned spatial light modulator.

4.
Opt Express ; 20(12): 13302-10, 2012 Jun 04.
Article in English | MEDLINE | ID: mdl-22714358

ABSTRACT

We generate abruptly autofocusing beams that produce vortices at the focus. We give explicit equations for the phase-only Fourier masks that generate these beams including explanations for controlling the focal distance and numerical aperture. We show experimental results for the focal distance, the vortex pattern and show that the diameter of the focused beam can be made smaller than the size of a comparable Airy beam from a lens. Finally we show how to move the focus spot in three dimensions by encoding additional optical elements onto the phase pattern.

5.
Appl Opt ; 51(9): 1375-81, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22441485

ABSTRACT

In this work we apply the Dammann grating concept to generate an equal-intensity square array of Bessel quasi-free diffraction beams that diverge from a common center. We generate a binary phase mask that combines the axicon phase with the phase of a Dammann grating. The procedure can be extended to include vortex spiral phases that generate an array of optical pipes. Experimental results are provided by means of a twisted nematic liquid crystal display operating as a binary π phase spatial light modulator.


Subject(s)
Computer-Aided Design , Optical Devices , Refractometry/instrumentation , Algorithms , Computer Simulation , Equipment Design , Lasers , Light , Liquid Crystals , Models, Theoretical , Optical Phenomena , Scattering, Radiation
6.
Opt Express ; 20(1): 364-76, 2012 Jan 02.
Article in English | MEDLINE | ID: mdl-22274360

ABSTRACT

We present a method to generate complete arbitrary spatially variant polarization modulation of a light beam by means of a parallel aligned nematic liquid crystal spatial light modulator (SLM). We first analyze the polarization modulation properties in a transmission mode. We encode diffraction gratings onto the SLM and show how to achieve partial polarization control of the zero order transmitted light. We then extend the technique to a double modulation scheme, which is implemented using a single SLM divided in two areas in a reflective configuration. The polarization states of the transmitted beam from the first pass through the first area are rotated using two passes through a quarter wave plate. The beam then passes through the second area of the SLM where additional polarization information can be encoded. By combining previously reported techniques, we can achieve complete amplitude, phase and polarization control for the diffracted light that allows the creation of arbitrary diffractive optical elements including polarization control. Theoretical analysis based on the Jones matrix formalism, as well as excellent experimental results are presented.


Subject(s)
Computer-Aided Design , Liquid Crystals/chemistry , Models, Theoretical , Optical Devices , Refractometry/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
7.
Nature ; 480(7377): 344-7, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22170680

ABSTRACT

Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

SELECTION OF CITATIONS
SEARCH DETAIL
...