Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673748

ABSTRACT

Metabolic disorders (MDs), including dyslipidemia, non-alcoholic fatty liver disease, diabetes mellitus, obesity and cardiovascular diseases are a significant threat to human health, despite the many therapies developed for their treatment. Different classes of bioactive compounds, such as polyphenols, flavonoids, alkaloids, and triterpenes have shown therapeutic potential in ameliorating various disorders. Most of these compounds present low bioavailability when administered orally, being rapidly metabolized in the digestive tract and liver which makes their metabolites less effective. Moreover, some of the bioactive compounds cannot fully exert their beneficial properties due to the low solubility and complex chemical structure which impede the passive diffusion through the intestinal cell membranes. To overcome these limitations, an innovative delivery system of phytosomes was developed. This review aims to highlight the scientific evidence proving the enhanced therapeutic benefits of the bioactive compounds formulated in phytosomes compared to the free compounds. The existing knowledge concerning the phytosomes' preparation, their characterization and bioavailability as well as the commercially available phytosomes with therapeutic potential to alleviate MDs are concisely depicted. This review brings arguments to encourage the use of phytosome formulation to diminish risk factors inducing MDs, or to treat the already installed diseases as complementary therapy to allopathic medication.


Subject(s)
Metabolic Diseases , Phytochemicals , Humans , Metabolic Diseases/drug therapy , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytochemicals/administration & dosage , Biological Availability , Animals , Complementary Therapies/methods , Polyphenols/chemistry , Polyphenols/pharmacology , Polyphenols/administration & dosage , Phytosomes
2.
Pharmaceutics ; 15(4)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37111552

ABSTRACT

The poor water solubility of natural antioxidants restricts their bioavailability and therapeutic use. We aimed to develop a new phytosome formulation with active compounds from extracts of ginger (GINex) and rosehips (ROSAex) designed to increase their bioavailability, antioxidant and anti-inflammatory properties. The phytosomes (PHYTOGINROSA-PGR) were prepared from freeze-dried GINex, ROSAex and phosphatidylcholine (PC) in different mass ratios using the thin-layer hydration method. PGR was characterized for structure, size, zeta potential, and encapsulation efficiency. Results showed that PGR comprises several different populations of particles, their size increasing with ROSAex concentration, having a zeta potential of ~-21mV. The encapsulation efficiency of 6-gingerol and ß-carotene was >80%. 31P NMR spectra showed that the shielding effect of the phosphorus atom in PC is proportional to the amount of ROSAex in PGR. PGR with a mass ratio GINex:ROSAex:PC-0.5:0.5:1 had the most effective antioxidant and anti-inflammatory effects in cultured human enterocytes. PGR-0.5:0.5:1 bioavailability and biodistribution were assessed in C57Bl/6J mice, and their antioxidant and anti-inflammatory effects were evaluated after administration by gavage to C57Bl/6J mice prior to LPS-induced systemic inflammation. Compared to extracts, PGR induced a 2.6-fold increase in 6-gingerol levels in plasma and over 40% in the liver and kidneys, in parallel with a 65% decrease in the stomach. PGR treatment of mice with systemic inflammation increased the sera antioxidant enzymes paraoxonase-1 and superoxide dismutase-2 and decreased the proinflammatory TNFα and IL-1ß levels in the liver and small intestine. No toxicity was induced by PGR either in vitro or in vivo. In conclusion, the phytosome formulation of GINex and ROSAex we developed resulted in stable complexes for oral administration with increased bioavailability, antioxidant and anti-inflammatory potential of their active compounds.

3.
Biomolecules ; 10(4)2020 04 21.
Article in English | MEDLINE | ID: mdl-32326376

ABSTRACT

Atherosclerosis is the main process behind cardiovascular diseases (CVD), maladies which continue to be responsible for up to 70% of death worldwide. Despite the ongoing development of new and potent drugs, their incomplete efficacy, partial intolerance and numerous side effects make the search for new alternatives worthwhile. The focus of the scientific world turned to the potential of natural active compounds to prevent and treat CVD. Essential for effective prevention or treatment based on phytochemicals is to know their mechanisms of action according to their bioavailability and dosage. The present review is focused on the latest data about phenolic compounds and aims to collect and correlate the reliable existing knowledge concerning their molecular mechanisms of action to counteract important risk factors that contribute to the initiation and development of atherosclerosis: dyslipidemia, and oxidative and inflammatory-stress. The selection of phenolic compounds was made to prove their multiple benefic effects and endorse them as CVD remedies, complementary to allopathic drugs. The review also highlights some aspects that still need clear scientific explanations and draws up some new molecular approaches to validate phenolic compounds for CVD complementary therapy in the near future.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Cardiovascular Diseases/drug therapy , Complementary Therapies , Epigenesis, Genetic , Lipids/chemistry , Phenols/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Epigenesis, Genetic/drug effects , Humans , Phenols/chemistry
4.
Mol Nutr Food Res ; 58(3): 559-68, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24105997

ABSTRACT

SCOPE: Hyperlipidemia, hyperglycemia, and the oxidative stress are among the known risk factors of atherosclerosis. Our aim was to assess the hypolipidemic and antioxidant effects of a probiotic mix (Lactobacillus acidophilus and Bifidobacterium animalis) in hyperlipidemic hamsters (HL). METHODS AND RESULTS: Male Golden Syrian hamsters developed hyperlipidemia after 21 weeks of fat diet. For the last 5 weeks of experiment, ten HL were treated with the probiotic mix (HLP), ten received water (HL). Ten animals received standard chow (N). Increase of plasma total cholesterol (TC), triglycerides (TG), phospholipids (PL), oxidized LDL, glucose, of 4-hydroxynonenal (4-HNE) in plasma, liver, and myocardium, and of intestinal Niemann Pick C1 like 1 (NPC1L1) and microsomal TG transfer protein (MTTP) expression was observed in HL versus N. The probiotic mix decreased plasma TC, TG, PL, oxidized LDL, 4-HNE, and glucose levels and increased paraoxonase-1 activity, decreased NPC1L1 and MTTP protein expression compared to HL. In HLP liver, a significant reduction of TC, TG, and fatty acids was observed. PL increased and 4-HNE levels decreased in the liver and myocardium of HLP versus HL. CONCLUSION: Our data support the administration of probiotics to humans because of their hypolipidemic (through decreasing intestinal NPC1L1 and MTTP) and antioxidant effects (stimulating HDL-associated paraoxonase-1).


Subject(s)
Antioxidants/pharmacology , Hyperlipidemias/drug therapy , Hyperlipidemias/metabolism , Probiotics/pharmacology , Animals , Bifidobacterium , Carrier Proteins/metabolism , Disease Models, Animal , Lactobacillus acidophilus , Lipid Metabolism/drug effects , Lipids/blood , Lipoproteins, LDL/blood , Liver/drug effects , Liver/metabolism , Male , Membrane Proteins/metabolism , Mesocricetus , Myocardium/metabolism , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...