Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(34): 39560-39566, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35975756

ABSTRACT

That physisorbents can reduce the energy footprint of water vapor capture and release has attracted interest because of potential applications such as moisture harvesting, dehumidification, and heat pumps. In this context, sorbents exhibiting an S-shaped single-step water sorption isotherm are desirable, most of which are structurally rigid sorbents that undergo pore-filling at low relative humidity (RH), ideally below 30% RH. Here, we report that a new flexible one-dimensional (1D) coordination network, [Cu(HQS)(TMBP)] (H2HQS = 8-hydroxyquinoline-5-sulfonic acid and TMBP = 4,4'-trimethylenedipyridine), exhibits at least five phases: two as-synthesized open phases, α ⊃ H2O and ß âŠƒ MeOH; an activated closed phase (γ); CO2 (δ ⊃ CO2) and C2H2 (ϵ ⊃ C2H2) loaded phases. The γ phase underwent a reversible structural transformation to α ⊃ H2O with a stepped sorption profile (Type F-IV) when exposed to water vapor at <30% RH at 300 K. The hydrolytic stability of [Cu(HQS)(TMBP)] was confirmed by powder X-ray diffraction (PXRD) after immersion in boiling water for 6 months. Temperature-humidity swing cycling measurements demonstrated that working capacity is retained for >100 cycles and only mild heating (<323 K) is required for regeneration. Unexpectedly, the kinetics of loading and unloading of [Cu(HQS)(TMBP)] compares favorably with well-studied rigid water sorbents such as Al-fumarate, MOF-303, and CAU-10-H. Furthermore, a polymer composite of [Cu(HQS)(TMBP)] was prepared and its water sorption retained its stepped profile and uptake capacity over multiple cycles.

2.
Chem Asian J ; 11(4): 540-7, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26629650

ABSTRACT

A copper(I)-based metal-organic framework ({[Cu2 Br2 (pypz)]n ⋅nH2 O} (Cu-Br-MOF) [pypz=bis[3,5-dimethyl-4-(4'-pyridyl)pyrazol-1-yl] methane] has been synthesized by using an elongated and flexible bridging ligand. The structure analysis reveals that each pypz ligand acts as a tritopic ligand connected to two Cu2 Br2 dimeric units, forming a one-dimensional zig-zag chain, and these chains further connected by a Cu2 Br2 unit, give a two-dimensional framework on the bc-plane. In the Cu2 Br2 dimeric unit, the copper ions are four coordinated, thereby possessing a tetrahedral geometry; this proves to be an excellent heterogeneous catalyst for the aerobic homocoupling of arylboronic acids under mild reaction conditions. This method requires only 3 mol % of catalyst and it does not require any base or oxidant-compared to other conventional (Cu, Pd, Fe, and Au) catalysts-for the transformation of arylboronic acids in very good yields (98 %). The shape and size selectivity of the catalyst in the homocoupling was investigated. The use of the catalyst was further extended to the epoxidation of olefins. Moreover, the catalyst can be easily separated by simple filtration and reused efficiently up to 5 cycles without major loss of reactivity.


Subject(s)
Alkenes/chemistry , Boronic Acids/chemistry , Copper/chemistry , Epoxy Compounds/chemistry , Hydrocarbons, Aromatic/chemistry , Organometallic Compounds/chemistry , Boronic Acids/chemical synthesis , Catalysis , Hydrocarbons, Aromatic/chemical synthesis , Models, Molecular
3.
Chemistry ; 21(39): 13793-801, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26274020

ABSTRACT

Three isostructural lanthanide-based two- dimensional coordination polymers (CPs) {[Ln2(L)3(H2O)2]n⋅2n CH3OH)⋅2n H2O} (Ln=Gd(3+) (1), Tb(3+) (2), Dy(3+) (3); H2L=cyclobutane-1,1-dicarboxylic acid) were synthesized by using a low molecular weight dicarboxylate ligand and characterized. Single-crystal structure analysis showed that in complexes 1-3 lanthanide centers are connected by µ3-bridging cyclobutanedicarboxylate ligands along the c axis to form a rod-shaped infinite 1D coordination chain, which is further linked with nearby chains by µ4-connected cyclobutanedicarboxylate ligands to form 2D CPs in the bc plane. Viewing the packing of the complexes down the b axis reveals that the lattice methanol molecules are located in the interlayer space between the adjacent 2D layers and form H-bonds with lattice and coordinated water molecules to form 1D chains. Magnetic properties of complexes 1-3 were thoroughly investigated. Complex 1 exhibits dominant ferromagnetic interaction between two nearby gadolinium centers and also acts as a cryogenic magnetic refrigerant having a significant magnetic entropy change of -ΔSm=32.8 J kg(-1) K(-1) for ΔH=7 T at 4 K (calculated from isothermal magnetization data). Complex 3 shows slow relaxation of magnetization below 10 K. Impedance analysis revealed that the complexes show humidity-dependent proton conductivity (σ=1.5×10(-5) S cm(-1) for 1, σ=2.07×10(-4) S cm(-1) for 2, and σ=1.1×10(-3) S cm(-1) for 3) at elevated temperature (>75 °C). They retain the conductivity for up to 10 h at high temperature and high humidity. Furthermore, the proton conductivity results were correlated with the number of water molecules from the water-vapor adsorption measurements. Water-vapor adsorption studies showed hysteretic and two-step water vapor adsorption (182,000 µL g(-1) for 1, 184,000 µL g(-1) for 2, and 1,874,000 µL g(-1) for 3) in the experimental pressure range. Simulation of water-vapor adsorption by the Monte Carlo method (for 1) confirmed the high density of adsorbed water molecules, preferentially in the interlayer space between the 2D layers.

4.
Chem Commun (Camb) ; 51(30): 6576-9, 2015 Apr 18.
Article in English | MEDLINE | ID: mdl-25772382

ABSTRACT

A Zn(II) based luminescent metal organic framework is synthesized, which acts as a dual functional fluorescent sensor to selectively detect picric acid and palladium(II).

5.
Inorg Chem ; 54(4): 1218-22, 2015 Feb 16.
Article in English | MEDLINE | ID: mdl-25594401

ABSTRACT

We report the proton conduction properties of a 2D flexible MOF and a 1D coordination polymer having the molecular formulas {[Zn(C10H2O8)0.5(C10S2N2H8)]·5H2O]}n (1) and {[Zn(C10H2O8)0.5(C10S2N2H8)]·2H2O]}n (2), respectively. Compounds 1 and 2 show high conductivity values of 2.55 × 10(-7) and 4.39 × 10(-4) S cm(-1) at 80 °C and 95% RH. The conductivity value of compound 1 is in the range of those for previously reported flexible MOFs, and compound 2 shows the highest proton conductivity among the carboxylate-based 1D CPs. The dimensionality and the internal hydrogen bonding connectivity play a vital role in the resultant conductivity. Variable-temperature experiments of both compounds at high humidity reveal that the conductivity values increase with increasing temperature, whereas the variable humidity studies signify the influence of relative humidity on high-temperature proton conductivity. The time-dependent measurements for both compounds demonstrate their ability to retain conductivity up to 10 h.


Subject(s)
Carboxylic Acids/chemistry , Organometallic Compounds/chemistry , Polymers/chemistry , Protons , Temperature , Electric Conductivity , Organometallic Compounds/chemical synthesis , Polymers/chemical synthesis , Zinc/chemistry
6.
Chem Asian J ; 10(3): 653-60, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25523149

ABSTRACT

The synthesis and characterization of two isoreticular metal-organic frameworks (MOFs), {[Cd(bdc)(4-bpmh)]}n⋅2 n(H2O) (1) and {[Cd(2-NH2bdc)(4-bpmh)]}n⋅2 n(H2O) (2) [bdc = benzene dicarboxylic acid; 2-NH2bdc = 2-amino benzene dicarboxylic acid; 4-bpmh = N,N-bis-pyridin-4-ylmethylene-hydrazine], are reported. Both compounds possess similar two-fold interpenetrated 3D frameworks bridged by dicarboxylates and a 4-bpmh linker. The 2D Cd-dicarboxylate layers are extended along the a-axis to form distorted square grids which are further pillared by 4-bpmh linkers to result in a 3D pillared-bilayer interpenetrated framework. Gas adsorption studies demonstrate that the amino-functionalized MOF 2 shows high selectivity for CO2 (8.4 wt % 273 K and 7.0 wt % 298 K) over CH4 , and the uptake amounts are almost double that of non-functional MOF 1. Iodine (I2 ) adsorption studies reveal that amino-functionalized MOF 2 exhibits a faster I2 adsorption rate and controlled delivery of I2 over the non-functionalized homolog 1.

7.
Dalton Trans ; 43(45): 16996-9, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-25325616

ABSTRACT

We present a robust two dimensional coordination polymer, [Ni2(L)2(N(CN)2)2]n (1) (LH = 2-((1-(pyridin-2-yl)ethylimino)methyl)phenol; N(CN)2(-) = dicyanamide ion) using a chiral Schiff base (LH), which shows diastereoselectivity in the structure via a chiral self-discrimination process, ferro- and antiferromagnetic interactions among the metal centers and unusual CO2 uptake behavior as a porous framework.

8.
Dalton Trans ; 43(19): 7191-9, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24676502

ABSTRACT

A new 2D pillared-bilayer flexible open metal organic framework {[Cu(tdc)(bpe)]n·2n(H2O)·n(MeOH)} (compound 1) [H2tdc = 2,5 thiophenedicarboxylic acid; bpe = 1,2-bis(4-pyridyl)ethane] has been synthesized through a solvent diffusion technique and structurally characterized. The structure analysis reveals that the tdc ligands formed bilayers with the Cu(II) ions along the b-direction and the layers are further pillared by bpe linkers and resulted in a 2D pillared-bilayer porous framework with a four connected uninodal sq1/Shubnikob tetragonal plane net with the Schälfli symbol {4(4)·6(2)}. The framework is enclosed with large square shaped channels (13.7 × 8.35 Å(2)) along the bc-plane and the channels are occupied by guest solvent molecules. The adsorption studies reveal that compound 1 shows selective adsorption for CO2 over CH4 at room temperature and it also shows hysteretic sorption for a few protic solvents (H2O and EtOH) and a Type-1 isotherm for an aprotic solvent (CH3CN). The catalytic performance of compound 1 for Glaser type homo-coupling reactions has also been reported.

9.
Inorg Chem ; 52(22): 12866-8, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24171473

ABSTRACT

A new 2D interdigitated and highly flexible, breathing metal-organic framework has been synthesized through a diffusion technique by using the aldrithiol linker and pyromellitate ligand. The compound shows selective, stepwise, reversible, and hysteretic adsorption properties for CO2 gas and H2O, MeOH, and CH3CN vapors.

SELECTION OF CITATIONS
SEARCH DETAIL
...