Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Inf Technol ; 15(1): 87-100, 2023.
Article in English | MEDLINE | ID: mdl-36246340

ABSTRACT

Social media plays an important role in disseminating information and analysing public and government opinions. The vast majority of previous research has examined information diffusion and opinion analysis separately. This study proposes a new framework for analysing both information diffusion and opinion evolution. The change in opinion over time is known as opinion evolution. To propose a new model for predicting information diffusion and opinion analysis in social media, a forest fire algorithm, cuckoo search, and fuzzy c-means clustering are used. The forest fire algorithm is used to determine the diffuser and non-diffuser of information in social networks, and fuzzy c-means clustering with the cuckoo search optimization algorithm is proposed to cluster Twitter content into various opinion categories and to determine opinion change. On different Twitter data sets, the proposed model outperformed the existing methods in terms of precision, recall, and accuracy.

2.
Front Plant Sci ; 13: 982247, 2022.
Article in English | MEDLINE | ID: mdl-36119609

ABSTRACT

Quantifying the phenolic compounds in plants is essential for maintaining the beneficial effects of plants on human health. Existing measurement methods are destructive and/or time consuming. To overcome these issues, research was conducted to develop a non-destructive and rapid measurement of phenolic compounds using hyperspectral imaging (HSI) and machine learning. In this study, the Arabidopsis was used since it is a model plant. They were grown in controlled and various stress conditions (LED lights and drought). Images were captured using HSI in the range of 400-1,000 nm (VIS/NIR) and 900-2,500 nm (SWIR). Initially, the plant region was segmented, and the spectra were extracted from the segmented region. These spectra were synchronized with plants' total phenolic content reference value, which was obtained from high-performance liquid chromatography (HPLC). The partial least square regression (PLSR) model was applied for total phenolic compound prediction. The best prediction values were achieved with SWIR spectra in comparison with VIS/NIR. Hence, SWIR spectra were further used. Spectral dimensionality reduction was performed based on discrete cosine transform (DCT) coefficients and the prediction was performed. The results were better than that of obtained with original spectra. The proposed model performance yielded R 2-values of 0.97 and 0.96 for calibration and validation, respectively. The lowest standard errors of predictions (SEP) were 0.05 and 0.07 mg/g. The proposed model out-performed different state-of-the-art methods. These demonstrate the efficiency of the model in quantifying the total phenolic compounds that are present in plants and opens a way to develop a rapid measurement system.

SELECTION OF CITATIONS
SEARCH DETAIL
...