Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 28(17): 5243-5253, 2022 09.
Article in English | MEDLINE | ID: mdl-35652259

ABSTRACT

Hemiboreal and boreal forests growing at the southern margin of the permafrost distribution are vulnerable to climate warming. However, how climate warming threatens the growth of dominant tree species that are distributed on permafrost remains to be determined, particularly in synchrony with warming-induced permafrost degradation. Tree growth in the permafrost region of southern Siberia was hypothesized to be highly sensitive to temperature increasing and warming-induced permafrost degradation. To test this hypothesis, we sampled the tree ring width of 535 trees of dominant species, larch (including Larix gmelinii and L. sibirica) and white birch (Betula platyphylla), in ten hemiboreal to boreal forest plots within different permafrost zones. The relationships between the tree ring basal area index (BAI) and temperature, precipitation, and the Palmer drought severity index (PDSI) were compared among plots located in two permafrost zones. In the isolated permafrost zone, white birch grows better than larch and is not drought-stressed (p < .05). We suggest that the deep-rooted white birch benefits from the water from thawing permafrost, while the growth of the shallow-rooted larch is stressed by drought. In the sporadic discontinuous permafrost zone, both white birch and larch benefited from permafrost melting, but the sensitivity of larch growth to PDSI is still significant (p < .05), indicating drought is still an important climatic factor limiting the growth of larch. Our results imply that the permafrost degradation caused by climate warming affects tree growth by creating the root layer additional water source. In the future, it is necessary to focus on monitoring permafrost degradation to better predict forest dynamics at the southern margin of the permafrost distribution.


Subject(s)
Larix , Permafrost , Betula , Climate Change , Forests , Siberia , Trees , Water
2.
Biodivers Data J ; 10: e78666, 2022.
Article in English | MEDLINE | ID: mdl-35095300

ABSTRACT

BACKGROUND: The dataset providing information on the geographic distribution of Oxytropis species on the territory of Asian Russia is discussed. The data were extracted from different sources including prominent floras and check-lists, Red Data books, published research on congeneric species and authors' field observations and mainly cover less-studied, remote regions of Russia. The dataset should be of value to applied, basic and theoretical plant biologists and ecologists interested in the Oxytropis species. NEW INFORMATION: The dataset includes 5172 distribution records for 143 species and 15 subspecies of genus Oxytropis DC. (Fabaceae Lindl.) in Asian Russia. The dataset fills gaps in the distribution of locoweeds in the study area and contains precise coordinates for many of rare and endemic species.

3.
Biodivers Data J ; 9: e77409, 2021.
Article in English | MEDLINE | ID: mdl-34949957

ABSTRACT

BACKGROUND: The area north of Lake Baikal has been poorly studied. Moreover, most of the studies conducted in this region were focused on mountain ridges or river valleys. This region includes a part of Baikal-Amur Mainline (BAM), a broad-gauge railway in the centre of Siberia, Russia. The railway is an alternative route of the Trans-Siberian Railway; BAM starts in southern Siberia (Taishet station of Irktusk Oblast), passes through the northern part of Lake Baikal and finishes in the Russian Far East (Sovetskaya Gavan station of Khabarovsky Krai). BAM has four connections with the Trans-Siberian Railway and is the centre of economic development for many regions of Russia. Maya Ivanova and Alexandr Chepurnov summarised the existing floristic information for this region in detailed species distribution maps which they published in the book "Flora of the western part of developing regions of Baikal-Amur Mainline (BAM)" (1983). After publishing this book, very few floristic studies have been performed in the study region. All available botanical information is still accumulated in a number of printed papers or books with limited circulation, which are not widely known to the international scientific community. NEW INFORMATION: We have digitised the point distribution maps from the book of Ivanova and Chepurnov and georeferenced all occurrence and sampling localities. The resulting dataset includes 9972 occurrences for 770 vascular plant species and subspecies from the area north of Lake Baikal. Additionally, the dataset includes information on the distribution of 43 rare and endangered species with 366 occurrences. From our point of view, the dataset makes a contribution to the global biodiversity data mobilisation, providing plant species distribution data for such a remote mountainous area.

4.
Glob Chang Biol ; 27(18): 4435-4448, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34101938

ABSTRACT

Siberia has undergone dramatic climatic changes due to global warming in recent decades. Yet, the ecological responses to these climatic changes are still poorly understood due to a lack of data. Here, we use a unique data set from the Russian 'Chronicles of Nature' network to analyse the long-term (1976-2018) phenological shifts in leaf out, flowering, fruiting and senescence of 67 common Siberian plant species. We find that Siberian boreal forest plants advanced their early season (leaf out and flowering) and mid-season (fruiting) phenology by -2.2, -0.7 and -1.6 days/decade, and delayed the onset of senescence by 1.6 days/decade during this period. These mean values, however, are subject to substantial intraspecific variability, which is partly explained by the plants' growth forms. Trees and shrubs advanced leaf out and flowering (-3.1 and -3.3. days/decade) faster than herbs (-1 day/decade), presumably due to the more direct exposure of leaf and flower buds to ambient air for the woody vegetation. For senescence, we detected a reverse pattern: stronger delays in herbs (2.1 days/decade) than in woody plants (1.0-1.2 days/decade), presumably due to the stronger effects of autumn frosts on the leaves of herbs. Interestingly, the timing of fruiting in all four growth forms advanced at similar paces, from 1.4 days/decade in shrubs to 1.7 days/decade in trees and herbs. Our findings point to a strong, yet heterogeneous, response of Siberian plant phenology to recent global warming. Furthermore, the results highlight that species- and growth form-specific differences among study species could be used to identify plants particularly at risk of decline due to their low adaptive capacity or a loss of synchronization with important interaction partners.


Subject(s)
Climate Change , Trees , Global Warming , Plant Leaves , Seasons , Temperature
5.
Glob Chang Biol ; 23(6): 2370-2382, 2017 06.
Article in English | MEDLINE | ID: mdl-27935165

ABSTRACT

Several studies have documented that regional climate warming and the resulting increase in drought stress have triggered increased tree mortality in semiarid forests with unavoidable impacts on regional and global carbon sequestration. Although climate warming is projected to continue into the future, studies examining long-term resilience of semiarid forests against climate change are limited. In this study, long-term forest resilience was defined as the capacity of forest recruitment to compensate for losses from mortality. We observed an obvious change in long-term forest resilience along a local aridity gradient by reconstructing tree growth trend and disturbance history and investigating postdisturbance regeneration in semiarid forests in southern Siberia. In our study, with increased severity of local aridity, forests became vulnerable to drought stress, and regeneration first accelerated and then ceased. Radial growth of trees during 1900-2012 was also relatively stable on the moderately arid site. Furthermore, we found that smaller forest patches always have relatively weaker resilience under the same climatic conditions. Our results imply a relatively higher resilience in arid timberline forest patches than in continuous forests; however, further climate warming and increased drought could possibly cause the disappearance of small forest patches around the arid tree line. This study sheds light on climate change adaptation and provides insight into managing vulnerable semiarid forests.


Subject(s)
Climate Change , Forests , Trees/growth & development , Siberia
6.
Glob Chang Biol ; 19(8): 2500-10, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23564688

ABSTRACT

Forests around the world are subject to risk of high rates of tree growth decline and increased tree mortality from combinations of climate warming and drought, notably in semi-arid settings. Here, we assess how climate warming has affected tree growth in one of the world's most extensive zones of semi-arid forests, in Inner Asia, a region where lack of data limits our understanding of how climate change may impact forests. We show that pervasive tree growth declines since 1994 in Inner Asia have been confined to semi-arid forests, where growing season water stress has been rising due to warming-induced increases in atmospheric moisture demand. A causal link between increasing drought and declining growth at semi-arid sites is corroborated by correlation analyses comparing annual climate data to records of tree-ring widths. These ring-width records tend to be substantially more sensitive to drought variability at semi-arid sites than at semi-humid sites. Fire occurrence and insect/pathogen attacks have increased in tandem with the most recent (2007-2009) documented episode of tree mortality. If warming in Inner Asia continues, further increases in forest stress and tree mortality could be expected, potentially driving the eventual regional loss of current semi-arid forests.


Subject(s)
Droughts , Global Warming , Pinaceae/growth & development , China , Mongolia , Pinaceae/physiology , Siberia , Species Specificity , Trees/growth & development , Trees/physiology
7.
PLoS One ; 7(8): e42619, 2012.
Article in English | MEDLINE | ID: mdl-22916142

ABSTRACT

Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies.


Subject(s)
Global Warming , Trees/growth & development , Climate , Siberia
SELECTION OF CITATIONS
SEARCH DETAIL
...