Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
3.
Front Bioeng Biotechnol ; 11: 1124100, 2023.
Article in English | MEDLINE | ID: mdl-37180048

ABSTRACT

Regulation of research on microbes that cause disease in humans has historically been focused on taxonomic lists of 'bad bugs'. However, given our increased knowledge of these pathogens through inexpensive genome sequencing, 5 decades of research in microbial pathogenesis, and the burgeoning capacity of synthetic biologists, the limitations of this approach are apparent. With heightened scientific and public attention focused on biosafety and biosecurity, and an ongoing review by US authorities of dual-use research oversight, this article proposes the incorporation of sequences of concern (SoCs) into the biorisk management regime governing genetic engineering of pathogens. SoCs enable pathogenesis in all microbes infecting hosts that are 'of concern' to human civilization. Here we review the functions of SoCs (FunSoCs) and discuss how they might bring clarity to potentially problematic research outcomes involving infectious agents. We believe that annotation of SoCs with FunSoCs has the potential to improve the likelihood that dual use research of concern is recognized by both scientists and regulators before it occurs.

4.
Gene Ther ; 30(5): 407-410, 2023 05.
Article in English | MEDLINE | ID: mdl-35264741

ABSTRACT

Optimizing viral vectors and their properties will be important for improving the effectiveness and safety of clinical gene therapy. However, such research may generate dual-use insights relevant to the enhancement of pandemic pathogens. In particular, reliable and generalizable methods of immune evasion could increase viral fitness sufficient to cause a new pandemic. High potential for misuse is associated with (1) the development of universal genetic elements for immune modulation, (2) specific insights on capsid engineering for antibody evasion applicable to viruses with pandemic potential, and (3) the development of computational methods to inform capsid engineering. These risks may be mitigated by prioritizing non-viral delivery systems, pharmacological immune modulation methods, non-genetic vector surface modifications, and engineering methods specific to AAV and other viruses incapable of unassisted human-to-human transmission. We recommend that computational vector engineering and the publication of associated code and data be limited to AAV until a technical solution for preventing malicious access to viral engineering tools has been established.


Subject(s)
Capsid Proteins , Genetic Vectors , Humans , Genetic Vectors/genetics , Capsid Proteins/genetics , Capsid , Dependovirus/genetics
5.
Nat Commun ; 13(1): 6754, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376280

ABSTRACT

Chronic hyperglycaemia causes a dramatic decrease in mitochondrial metabolism and insulin content in pancreatic ß-cells. This underlies the progressive decline in ß-cell function in diabetes. However, the molecular mechanisms by which hyperglycaemia produces these effects remain unresolved. Using isolated islets and INS-1 cells, we show here that one or more glycolytic metabolites downstream of phosphofructokinase and upstream of GAPDH mediates the effects of chronic hyperglycemia. This metabolite stimulates marked upregulation of mTORC1 and concomitant downregulation of AMPK. Increased mTORC1 activity causes inhibition of pyruvate dehydrogenase which reduces pyruvate entry into the tricarboxylic acid cycle and partially accounts for the hyperglycaemia-induced reduction in oxidative phosphorylation and insulin secretion. In addition, hyperglycaemia (or diabetes) dramatically inhibits GAPDH activity, thereby impairing glucose metabolism. Our data also reveal that restricting glucose metabolism during hyperglycaemia prevents these changes and thus may be of therapeutic benefit. In summary, we have identified a pathway by which chronic hyperglycaemia reduces ß-cell function.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Islets of Langerhans , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Glucose/metabolism , Glycolysis/physiology , Insulin/metabolism , Hyperglycemia/metabolism , Pyruvic Acid/metabolism , Islets of Langerhans/metabolism , Diabetes Mellitus/metabolism
6.
Proc Natl Acad Sci U S A ; 119(23): e2119266119, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35639701

ABSTRACT

The effectiveness of mask wearing at controlling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission has been unclear. While masks are known to substantially reduce disease transmission in healthcare settings [D. K. Chu et al., Lancet 395, 1973­1987 (2020); J. Howard et al., Proc. Natl. Acad. Sci. U.S.A. 118, e2014564118 (2021); Y. Cheng et al., Science eabg6296 (2021)], studies in community settings report inconsistent results [H. M. Ollila et al., medRxiv (2020); J. Brainard et al., Eurosurveillance 25, 2000725 (2020); T. Jefferson et al., Cochrane Database Syst. Rev. 11, CD006207 (2020)]. Most such studies focus on how masks impact transmission, by analyzing how effective government mask mandates are. However, we find that widespread voluntary mask wearing, and other data limitations, make mandate effectiveness a poor proxy for mask-wearing effectiveness. We directly analyze the effect of mask wearing on SARS-CoV-2 transmission, drawing on several datasets covering 92 regions on six continents, including the largest survey of wearing behavior (n= 20 million) [F. Kreuter et al., https://gisumd.github.io/COVID-19-API-Documentation (2020)]. Using a Bayesian hierarchical model, we estimate the effect of mask wearing on transmission, by linking reported wearing levels to reported cases in each region, while adjusting for mobility and nonpharmaceutical interventions (NPIs), such as bans on large gatherings. Our estimates imply that the mean observed level of mask wearing corresponds to a 19% decrease in the reproduction number R. We also assess the robustness of our results in 60 tests spanning 20 sensitivity analyses. In light of these results, policy makers can effectively reduce transmission by intervening to increase mask wearing.


Subject(s)
COVID-19 , Masks , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Public Policy , Surveys and Questionnaires
7.
Sci Data ; 9(1): 145, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365668

ABSTRACT

During the second half of 2020, many European governments responded to the resurging transmission of SARS-CoV-2 with wide-ranging non-pharmaceutical interventions (NPIs). These efforts were often highly targeted at the regional level and included fine-grained NPIs. This paper describes a new dataset designed for the accurate recording of NPIs in Europe's second wave to allow precise modelling of NPI effectiveness. The dataset includes interventions from 114 regions in 7 European countries during the period from the 1st August 2020 to the 9th January 2021. The paper includes NPI definitions tailored to the second wave following an exploratory data collection. Each entry has been extensively validated by semi-independent double entry, comparison with existing datasets, and, when necessary, discussion with local epidemiologists. The dataset has considerable potential for use in disentangling the effectiveness of NPIs and comparing the impact of interventions across different phases of the pandemic.


Subject(s)
COVID-19/therapy , COVID-19/epidemiology , COVID-19/psychology , Europe , Humans , Mass Gatherings , Psychosocial Intervention , SARS-CoV-2
8.
PLoS Biol ; 20(4): e3001600, 2022 04.
Article in English | MEDLINE | ID: mdl-35421093

ABSTRACT

The risk of accidental or deliberate misuse of biological research is increasing as biotechnology advances. As open science becomes widespread, we must consider its impact on those risks and develop solutions that ensure security while facilitating scientific progress. Here, we examine the interaction between open science practices and biosecurity and biosafety to identify risks and opportunities for risk mitigation. Increasing the availability of computational tools, datasets, and protocols could increase risks from research with misuse potential. For instance, in the context of viral engineering, open code, data, and materials may increase the risk of release of enhanced pathogens. For this dangerous subset of research, both open science and biosecurity goals may be achieved by using access-controlled repositories or application programming interfaces. While preprints accelerate dissemination of findings, their increased use could challenge strategies for risk mitigation at the publication stage. This highlights the importance of oversight earlier in the research lifecycle. Preregistration of research, a practice promoted by the open science community, provides an opportunity for achieving biosecurity risk assessment at the conception of research. Open science and biosecurity experts have an important role to play in enabling responsible research with maximal societal benefit.


Subject(s)
Biosecurity , Containment of Biohazards , Containment of Biohazards/methods
10.
Vaccine ; 40(17): 2514-2523, 2022 04 14.
Article in English | MEDLINE | ID: mdl-33640142

ABSTRACT

Vaccine platforms have been critical for accelerating the timeline of COVID-19 vaccine development. Faster vaccine timelines demand further development of these technologies. Currently investigated platform approaches include virally vectored and RNA-based vaccines, as well as DNA vaccines and recombinant protein expression system platforms, each featuring different advantages and challenges. Viral vector-based and DNA vaccines in particular have received a large share of research funding to date. Platform vaccine technologies may feature dual-use potential through informing or enabling pathogen engineering, which may raise the risk for the occurrence of deliberate, anthropogenic biological events. Research on virally vectored vaccines exhibits relatively high dual-use potential for two reasons. First, development of virally vectored vaccines may generate insights of particular dual-use concern such as techniques for circumventing pre-existing anti-vector immunity. Second, while the amount of work on viral vectors for gene therapy exceeds that for vaccine research, work on virally vectored vaccines may increase the number of individuals capable of engineering viruses of particular concern, such as ones closely related to smallpox. Other platform vaccine approaches, such as RNA vaccines, feature relatively little dual-use potential. The biosecurity risk associated with platform advancement may be minimised by focusing preferentially on circumventing anti-vector immunity with non-genetic rather than genetic modifications, using vectors that are not based on viruses pathogenic to humans, or preferential investment into promising RNA-based vaccine approaches. To reduce the risk of anthropogenic pandemics, structures for the governance of biotechnology and life science research with dual-use potential need to be reworked. Scientists outside of the pathogen research community, for instance those who work on viral vectors or oncolytic viruses, need to become more aware of the dual-use risks associated with their research. Both public and private research-funding bodies need to prioritise the evaluation and reduction of biosecurity risks.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Viruses , Biosecurity , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Genetic Vectors , Humans , RNA , Vaccines, DNA/genetics , Viruses/genetics
11.
mBio ; 12(5): e0186421, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34663091

ABSTRACT

The COVID-19 pandemic has demonstrated the world's vulnerability to biological catastrophe and elicited unprecedented scientific efforts. Some of this work and its derivatives, however, present dual-use risks (i.e., potential harm from misapplication of beneficial research) that have largely gone unaddressed. For instance, gain-of-function studies and reverse genetics protocols may facilitate the engineering of concerning SARS-CoV-2 variants and other pathogens. The risk of accidental or deliberate release of dangerous pathogens may be increased by large-scale collection and characterization of zoonotic viruses undertaken in an effort to understand what enables animal-to-human transmission. These concerns are exacerbated by the rise of preprint publishing that circumvents a late-stage opportunity for dual-use oversight. To prevent the next global health emergency, we must avoid inadvertently increasing the threat of future biological events. This requires a nuanced and proactive approach to dual-use evaluation throughout the research life cycle, including the conception, funding, conduct, and dissemination of research.


Subject(s)
COVID-19/epidemiology , Containment of Biohazards , Global Health/statistics & numerical data , Humans , Pandemics
12.
Nat Commun ; 12(1): 5820, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34611158

ABSTRACT

European governments use non-pharmaceutical interventions (NPIs) to control resurging waves of COVID-19. However, they only have outdated estimates for how effective individual NPIs were in the first wave. We estimate the effectiveness of 17 NPIs in Europe's second wave from subnational case and death data by introducing a flexible hierarchical Bayesian transmission model and collecting the largest dataset of NPI implementation dates across Europe. Business closures, educational institution closures, and gathering bans reduced transmission, but reduced it less than they did in the first wave. This difference is likely due to organisational safety measures and individual protective behaviours-such as distancing-which made various areas of public life safer and thereby reduced the effect of closing them. Specifically, we find smaller effects for closing educational institutions, suggesting that stringent safety measures made schools safer compared to the first wave. Second-wave estimates outperform previous estimates at predicting transmission in Europe's third wave.


Subject(s)
COVID-19/epidemiology , Government , Basic Reproduction Number , COVID-19/virology , Europe/epidemiology , Humans , Models, Theoretical , SARS-CoV-2/physiology , Time Factors
14.
NPJ Vaccines ; 6(1): 26, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33574335

ABSTRACT

The ongoing COVID-19 pandemic has demonstrated the importance of rapid and versatile development of emergency medical countermeasures such as vaccines. We discuss the role of platform vaccines and prototype pathogen research in modern vaccine development, and outline how previous pathogen-specific funding approaches can be improved to adequately promote vaccine R&D for emerging pandemics. We present a more comprehensive approach to financing vaccine R&D, which maximises biomedical pandemic preparedness by promoting flexible vaccine platforms and translatable research into prototype pathogens. As the numerous platform-based SARS-CoV-2 vaccines show, funders can accelerate pandemic vaccine development by proactively investing in versatile platform technologies. For certain emerging infectious diseases, where vaccine research can translate to other related pathogens with pandemic potential, investment decisions should reflect the full social value of increasing overall preparedness, rather than just the value of bringing a vaccine to market for individual pathogens.

15.
Front Immunol ; 11: 608460, 2020.
Article in English | MEDLINE | ID: mdl-33414790

ABSTRACT

The COVID-19 pandemic demonstrates the ongoing threat of pandemics caused by novel, previously unrecognized, or mutated pathogens with high transmissibility. Currently, vaccine development is too slow for vaccines to be used in the control of emerging pandemics. RNA-based vaccines might be suitable to meet this challenge. The use of an RNA-based delivery mechanism promises fast vaccine development, clinical approval, and production. The simplicity of in vitro transcription of mRNA suggests potential for fast, scalable, and low-cost manufacture. RNA vaccines are safe in theory and have shown acceptable tolerability in first clinical trials. Immunogenicity of SARS-CoV-2 mRNA vaccines in phase 1 trials looks promising, however induction of cellular immunity needs to be confirmed and optimized. Further optimization of RNA vaccine modification and formulation to this end is needed, which may also enable single injection regimens to be achievable. Self-amplifying RNA vaccines, which show high immunogenicity at low doses, might help to improve potency while keeping manufacturing costs low and speed high. With theoretical properties of RNA vaccines looking promising, their clinical efficacy is the key remaining question with regard to their suitability for tackling emerging pandemics. This question might be answered by ongoing efficacy trials of SARS-CoV-2 mRNA vaccines.


Subject(s)
Pandemics/prevention & control , RNA, Messenger , Vaccines, DNA , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...