Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(2 Pt 1): 021306, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11863515

ABSTRACT

A random-walk simulation program was developed to study the effect of dephasing spins in a uniform magnetic-field gradient in a porous material. It is shown that this simulation program correctly reproduces basic nuclear magnetic resonance behavior, such as the formation of a spin echo. The spin-echo decay due to dephasing in a nonrestricted medium gives the well-known exponential relation containing the cube of time, whereas the spin-echo decay due to dephasing in a porous material gives a monoexponential decay. By varying the pore size and magnetic-field gradient, the motional averaging regime and the localization regime can be simulated. Moreover, the unknown intermediate regime is investigated. By choosing the right scaling parameters, the spin-echo decay due to dephasing in a pore can be described by one master curve for all pore sizes and gradient strengths. This master curve reveals a small intermediate regime, perfectly symmetrical around the gradient for which the dephasing length is exactly equal to the structural length of the pore.

SELECTION OF CITATIONS
SEARCH DETAIL
...