Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Food Sci Nutr ; 75(1): 31-44, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37867390

ABSTRACT

The aim of this study was to evaluate and compare the concentration of water-soluble bioactive compounds in tomato products (polyphenols profile, water-soluble vitamins and nucleophilic substances) with the concentration of the same bioactive molecules existing in a water-soluble patented tomato extract, water-soluble tomato extract (WSTC), commercially available as FruitFlow®. This patented tomato extract has been recognised by EFSA (European Food Safety Authority) in a specific Health Claim declaration as having an "Antiplatelet health effect". More than 100 commercial tomato samples, coming from 18 different processing tomato companies worldwide, were analysed and compared with the FruitFlow® supplement. According to the multivariate statistical analyses applied to the data matrix, it is possible to conclude that the commercial tomato products measured (pastes, purees, others) show a significantly higher concentration of water-soluble bioactive molecules (nucleosides/nucleotides and polyphenols) responsible for an anti-platelet aggregation effect than the FruitFlow® dietary supplement.


Subject(s)
Solanum lycopersicum , Water , Platelet Aggregation , Dietary Supplements , Polyphenols , Plant Extracts/pharmacology
2.
Org Lett ; 8(17): 3671-4, 2006 Aug 17.
Article in English | MEDLINE | ID: mdl-16898788

ABSTRACT

[structure: see text] Organic-inorganic hybrids synthesized from lacunary polyoxotungstates (POMs) have been screened as oxidation catalysts with H2O2 under MW irradiation. Yields up to 99% have been obtained in 25-50 min depending both on the POM structure and on the organic moiety. The reaction scope, optimized with the best performing catalyst [gamma-SiW10O36(PhPO)2]4-, includes epoxidation of terminal and internal double bonds, alcohol oxidation, and sulfoxidation, as well as oxygen transfer to electron-deficient substrates as chalcone, ketones, and sulfoxides.

SELECTION OF CITATIONS
SEARCH DETAIL