Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Mol Bioeng ; 11(3): 163-174, 2018 Jun.
Article in English | MEDLINE | ID: mdl-31719883

ABSTRACT

INTRODUCTION: Traditionally thought to serve active vs. passive mechanical functions, respectively, a growing body of evidence suggests that actin microfilament and keratin intermediate filament (IF) networks, together with their associated cell-cell and cell-matrix anchoring junctions, may have a large degree of functional interdependence. Therefore, we hypothesized that the loss of keratin IFs in a knockout mouse keratinocyte model would affect the kinematics of colony formation, i.e., the spatiotemporal process by which individual cells join to form colonies and eventually a nascent epithelial sheet. METHODS: Time-lapse imaging and deformation tracking microscopy was used to observe colony formation for both wild type (WT) and keratin-deficient knockout (KO) mouse keratinocytes over 24 h. Cells were cultured under high calcium conditions on collagen-coated substrates with nominal stiffnesses of ~ 1.2 kPa (soft) and 24 kPa (stiff). Immunofluorescent staining of actin and selected adhesion proteins was also performed. RESULTS: The absence of keratin IFs markedly affected cell morphology, spread area, and cytoskeleton and adhesion protein organization on both soft and stiff substrates. Strikingly, an absence of keratin IFs also significantly reduced the ability of mouse keratinocytes to mechanically deform the soft substrate. Furthermore, KO cells formed colonies more efficiently on stiff vs. soft substrates, a behavior opposite to that observed for WT keratinocytes. CONCLUSIONS: Collectively, these data are strongly supportive of the idea that an interdependence between actin microfilaments and keratin IFs does exist, while further suggesting that keratin IFs may represent an important and under-recognized component of keratinocyte mechanosensation and the force generation apparatus.

2.
Biochem Biophys Rep ; 8: 376-381, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28955979

ABSTRACT

The tissues of the body are routinely subjected to various forms of mechanical vibration, the frequency, amplitude, and duration of which can contribute both positively and negatively to human health. The vocal cords, which are in close proximity to the thyroid, may also supply the thyroid with important mechanical signals that modulate hormone production via mechanical vibrations from phonation. In order to explore the possibility that vibrational stimulation from vocalization can enhance thyroid epithelial cell function, FRTL-5 rat thyroid cells were subjected to either chemical stimulation with thyroid stimulating hormone (TSH), mechanical stimulation with physiological vibrations, or a combination of the two, all in a well-characterized, torsional rheometer-bioreactor. The FRTL-5 cells responded to mechanical stimulation with significantly (p<0.05) increased metabolic activity, significantly (p<0.05) increased ROS production, and increased gene expression of thyroglobulin and sodium-iodide symporter compared to un-stimulated controls, and showed an equivalent or greater response than TSH only stimulated cells. Furthermore, the combination of TSH and oscillatory motion produced a greater response than mechanical or chemical stimulation alone. Taken together, these results suggest that mechanical vibrations could provide stimulatory cues that help maintain thyroid function.

3.
ACS Biomater Sci Eng ; 2(7): 1097-1107, 2016 Jul 11.
Article in English | MEDLINE | ID: mdl-33445238

ABSTRACT

Joint immobility is a debilitating complication of articular trauma that is characterized by thickening and stiffening of the joint capsule and the formation of fibrotic lesions inside joints. Capsule release surgery can temporarily restore mobility, but contraction often recurs due to the contractile activities of fibroblasts, which exert tension on the capsule ECM via nonmuscle myosin II. Based on these findings we hypothesized that blebbistatin, a drug that reversibly inhibits the activity of this protein, would relax ECM tension imposed by fibroblasts and reduce fibrosis. In this study, we characterized the effectiveness of blebbistatin as an anticontractile treatment. Given that sustained suppression of contractile activity may be required to achieve capsule release and reduce fibrosis, we compared the effects on fibroblast-mediated collagen ECM displacement of blebbistatin-loaded poly(lactide-co-gylcolide) (PLGA) particles versus bolus blebbistatin dosing. Time-lapse imaging of fluorescent microspheres embedded in collagen gels confirmed that PLGA/blebbistatin inhibited force generation and reduced both gel displacement and rate of displacement. In addition, collagen production at 10 days was significantly reduced. Taken together, these data indicate that blebbistatin-loaded PLGA particles can be used to inhibit fibroblast force-generation and reduce collagen production and lay the foundation for optimization of drug delivery technology for treating arthrofibrosis.

4.
J Biomech Eng ; 135(7): 71004, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23720151

ABSTRACT

Engineered tissues are commonly stretched or compressed (i.e., conditioned) during culture to stimulate extracellular matrix (ECM) production and to improve the mechanical properties of the growing construct. The relationships between mechanical stimulation and ECM remodeling, however, are complex, interdependent, and dynamic. Thus, theoretical models are required for understanding the underlying phenomena so that the conditioning process can be optimized to produce functional engineered tissues. Here, we continue our development of multiscale mechanical models by simulating the effect of cell tractions on developing isometric tension and redistributing forces in the surrounding fibers of a collagen gel embedded with explants. The model predicted patterns of fiber reorganization that were similar to those observed experimentally. Furthermore, the inclusion of cell compaction also changed the distribution of fiber strains in the gel compared to the acellular case, particularly in the regions around the cells where the highest strains were found.


Subject(s)
Cell Physiological Phenomena/physiology , Collagen/chemistry , Extracellular Matrix/physiology , Gels/chemistry , Mechanotransduction, Cellular/physiology , Models, Biological , Tissue Engineering/methods , Animals , Biomimetic Materials/chemistry , Cell Movement/physiology , Compressive Strength/physiology , Computer Simulation , Elastic Modulus/physiology , Extracellular Matrix/ultrastructure , Humans , Stress, Mechanical
5.
Mech Mater ; 44: 72-82, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22180691

ABSTRACT

Recent work has demonstrated that enzymatic degradation of collagen fibers exhibits strain-dependent kinetics. Conceptualizing how the strain dependence affects remodeling of collagenous tissues is vital to our understanding of collagen management in native and bioengineered tissues. As a first step towards this goal, the current study puts forward a multiscale model for enzymatic degradation and remodeling of collagen networks for two sample geometries we routinely use in experiments as model tissues. The multiscale model, driven by microstructural data from an enzymatic decay experiment, includes an exponential strain-dependent kinetic relation for degradation and constant growth. For a dogbone sample under uniaxial load, the model predicted that the distribution of fiber diameters would spread over the course of degradation because of variation in individual fiber load. In a cross-shaped sample, the central region, which experiences smaller, more isotropic loads, showed more decay and less spread in fiber diameter compared to the arms. There was also a slight shift in average orientation in different regions of the cruciform.

6.
Ann Biomed Eng ; 39(2): 714-29, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21046467

ABSTRACT

Human dermal fibroblasts entrapped in fibrin gels cast in cross-shaped (cruciform) geometries with 1:1 and 1:0.5 ratios of arm widths were studied to assess whether tension and alignment of the cells and fibrils affected ECM deposition. The cruciforms of contrasting geometry (symmetric vs. asymmetric), which developed different fiber alignment patterns, were harvested at 2, 5, and 10 weeks of culture. Cruciforms were subjected to planar biaxial testing, polarimetric imaging, DNA and biochemical analyses, histological staining, and SEM imaging. As the cruciforms compacted and developed fiber alignment, fibrin was degraded, and elastin and collagen were produced in a geometry-dependent manner. Using a continuum mechanical model that accounts for direction-dependent stress due to cell traction forces and cell contact guidance with aligned fibers that occurs in the cruciforms, the mechanical stress environment was concluded to influence collagen deposition, with deposition being the greatest in the narrow arms of the asymmetric cruciform where stress was predicted to be the largest.


Subject(s)
Extracellular Matrix/physiology , Fibroblasts/physiology , Fibroblasts/ultrastructure , Mechanotransduction, Cellular/physiology , Microfibrils/physiology , Microfibrils/ultrastructure , Tissue Engineering/methods , Cell Polarity , Cells, Cultured , Extracellular Matrix/ultrastructure , Fibrin/chemistry , Gels , Humans , Statistics as Topic , Stress, Mechanical , Tensile Strength/physiology
7.
J Biomed Mater Res A ; 88(2): 322-31, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18286605

ABSTRACT

The mechanical properties of tissues, tissue analogs, and biomaterials are dependent on their underlying microstructure. As such, many mechanical models incorporate some aspect of microstructure, but a robust protocol for characterizing fiber architecture remains a challenge. A number of image-based methods, including mean intercept length (MIL), line fraction deviation (LFD), and Fourier transform methods (FTM), have been applied to microstructural images to describe material heterogeneity and orientation, but a performance comparison, particularly for fiber networks, has not been conducted. In this study, we constructed 40 two-dimensional test images composed of simulated fiber networks varying in fiber number, orientation, and anisotropy index. We assessed the accuracy of each method in measuring principal direction (theta) and anisotropy index (alpha). FTM proved to be the superior method because it was more reliable in measurement accuracy (Deltatheta = 2.95 degrees +/- 6.72 degrees , Deltaalpha = 0.03 +/- 0.02), faster in execution time, and flexible in its application. MIL (Deltatheta = 6.23 degrees +/- 10.68 degrees , Deltaalpha = 0.08 +/- 0.06) was not significantly less accurate than FTM but was much slower. LFD (Deltatheta = 9.97 degrees +/- 11.82 degrees , Deltaalpha = 0.24 +/- 0.13) consistently underperformed. FTM results agreed qualitatively with fibrin gel SEM micrographs, suggesting that FTM can be used to obtain image-based statistical measurements of microstructure.


Subject(s)
Biomechanical Phenomena , Image Processing, Computer-Assisted/methods , Models, Biological , Anisotropy , Fourier Analysis , Imaging, Three-Dimensional/methods , Microscopy, Electron, Scanning
8.
Biomech Model Mechanobiol ; 7(3): 191-202, 2008 Jun.
Article in English | MEDLINE | ID: mdl-17520305

ABSTRACT

Osteoporosis affects nearly 10 million individuals in the United States. Conventional treatments include anti-resorptive drug therapies, but recently, it has been demonstrated that delivering a low magnitude, dynamic stimulus via whole body vibration can have an osteogenic effect without the need for large magnitude strain stimulus. Vibration of the vertebral body induces a range of stimuli that may account for the anabolic response including low magnitude strains, interfacial shear stress due to marrow movement, and blood transport. In order to evaluate the relative importance of these stimuli, we integrated a microstructural model of vertebral cancellous bone with a mixture theory model of the vertebral body. The predicted shear stresses on the surfaces of the trabeculae during vibratory loading are in the range of values considered to be stimulatory and increase with increasing solid volume fraction. Peak volumetric blood flow rates also varied with strain amplitude and frequency, but exhibited little dependence on solid volume fraction. These results suggest that fluid shear stress governs the response of the vertebrae to whole body vibration and that the marrow viscosity is a critical parameter which modulates the shear stress.


Subject(s)
Models, Biological , Spine/physiology , Vibration , Humans , Regional Blood Flow , Shear Strength , Spine/blood supply , Stress, Mechanical , Weight-Bearing
9.
J Biomech Eng ; 128(6): 879-89, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17154690

ABSTRACT

The biomechanics of the optic nerve head (ONH) may underlie many of the potential mechanisms that initiate the characteristic vision loss associated with primary open angle glaucoma. Therefore, it is important to characterize the physiological levels of stress and strain in the ONH and how they may change in relation to material properties, geometry, and microstructure of the tissue. An idealized, analytical microstructural model of the ONH load bearing tissues was developed based on an octagonal cellular solid that matched the porosity and pore area of morphological data from the lamina cribrosa (LC). A complex variable method for plane stress was applied to relate the geometrically dependent macroscale loads in the sclera to the microstructure of the LC, and the effect of different geometric parameters, including scleral canal eccentricity and laminar and scleral thickness, was examined. The transmission of macroscale load in the LC to the laminar microstructure resulted in stress amplifications between 2.8 and 24.5xIOP. The most important determinants of the LC strain were those properties pertaining to the sclera and included Young's modulus, thickness, and scleral canal eccentricity. Much larger strains were developed perpendicular to the major axis of an elliptical canal than in a circular canal. Average strain levels as high as 5% were obtained for an increase in IOP from 15 to 50 mm Hg.


Subject(s)
Intraocular Pressure/physiology , Mechanotransduction, Cellular/physiology , Models, Biological , Optic Disk/anatomy & histology , Optic Disk/physiology , Animals , Computer Simulation , Elasticity , Humans , Shear Strength , Stress, Mechanical
10.
Biomech Model Mechanobiol ; 2(2): 97-107, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14586811

ABSTRACT

Two- and three-dimensional structural models of the vertebral body have been used to estimate the mechanical importance of parameters that are difficult to quantify experimentally such as lattice disorder, trabecular thickness, trabecular spacing, connectivity, and fabric. Many of the models that investigate structure-function relationships of the vertebral body focus only on the trabecular architecture and neglect solid-fluid interactions. We developed a cellular solid model composed of two idealized unit cell geometries to investigate the continuum and micro-structural properties of human vertebral cancellous bone in a mathematically tractable model. Using existing histomorphological data we developed structure-function relationships for the mechanical properties of the solid phase, estimated the micro-structural strains, and predicted the fluid flow characteristics. We found that the micro-structural strains may be 1.7 to 2.2 times higher than the continuum level strains between the ages of 40 and 80. In addition, the predicted permeability agrees well with the experimental data.


Subject(s)
Aging/physiology , Models, Biological , Spine/physiology , Spine/ultrastructure , Adult , Aged , Aged, 80 and over , Animals , Computer Simulation , Elasticity , Humans , Middle Aged , Permeability , Porosity , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...