Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38464134

ABSTRACT

Neuromodulatory processes in the brain can critically change signal processing on a cellular level leading to dramatic changes in network level reorganization. Here, we use coupled non-identical Kuramoto oscillators to investigate how changes in the shape of phase response curves from Type 1 to Type 2, mediated by varying ACh levels, coupled with activity dependent plasticity may alter network reorganization. We first show that when plasticity is absent, the Type 1 networks, as expected, exhibit asynchronous dynamics with oscillators of the highest natural frequency robustly evolving faster in terms of their phase dynamics. At the same time, the Type 2 networks synchronize, with oscillators locked so that the ones with higher natural frequency have a constant phase lead as compared to the ones with lower natural frequency. This relationship establishes a robust mapping between the frequency and oscillators' phases in the network, leading to structure/frequency mapping when plasticity is present. Further we show that while connection plasticity can produce stable synchrony (so called splay states) in Type 1 networks, the structure/frequency reorganization observed in Type 2 networks is not present.

2.
Eur Phys J E Soft Matter ; 44(11): 137, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34782959

ABSTRACT

Epithelial cell clusters often move collectively on a substrate. Mechanical signals play a major role in organizing this behavior. There are a number of experimental observations in these systems which await a comprehensive explanation. These include: the internal strains are tensile even for clusters that expand by proliferation; the tractions on the substrate are often confined to the edges of the cluster; there can exist density waves within the cluster; and for cells in an annulus, there is a transition between expanding clusters with proliferation and the case where cells fill the annulus and rotate around it. We formulate a mechanical model to examine these effects. We use a molecular clutch picture which allows "stalling"-inhibition of cell contraction by external forces. Stalled cells are passive from a physical point of view and the un-stalled cells are active. By attaching cells to the substrate and to each other, and taking into account contact inhibition of locomotion, we get a simple picture for many of these findings as well as predictions that could be tested.


Subject(s)
Contact Inhibition , Models, Biological , Cell Movement
3.
Front Syst Neurosci ; 13: 64, 2019.
Article in English | MEDLINE | ID: mdl-31780905

ABSTRACT

Rate coding and phase coding are the two major coding modes seen in the brain. For these two modes, network dynamics must either have a wide distribution of frequencies for rate coding, or a narrow one to achieve stability in phase dynamics for phase coding. Acetylcholine (ACh) is a potent regulator of neural excitability. Acting through the muscarinic receptor, ACh reduces the magnitude of the potassium M-current, a hyperpolarizing current that builds up as neurons fire. The M-current contributes to several excitability features of neurons, becoming a major player in facilitating the transition between Type 1 (integrator) and Type 2 (resonator) excitability. In this paper we argue that this transition enables a dynamic switch between rate coding and phase coding as levels of ACh release change. When a network is in a high ACh state variations in synaptic inputs will lead to a wider distribution of firing rates across the network and this distribution will reflect the network structure or pattern of external input to the network. When ACh is low, network frequencies become narrowly distributed and the structure of a network or pattern of external inputs will be represented through phase relationships between firing neurons. This work provides insights into how modulation of neuronal features influences network dynamics and information processing across brain states.

4.
Soft Matter ; 15(24): 4856-4864, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31161163

ABSTRACT

Mechanical properties of the substrate play a vital role in cell motility. In particular, cells have been shown to migrate along aligned fibers in the substrate (contact guidance) and up stiffness gradients (durotaxis). Here we present a simple mechanical model for cell migration coupled to substrate properties, by placing a simulated cell on a lattice mimicking biopolymer gels or hydrogels. In our model cells attach to the substrate via focal adhesions (FAs). As the cells contract, forces are generated at the FAs, determining their maturation and detachment. At the same time, the cell was also allowed to move and rotate to maintain force and torque balance. Our model, in which the cells only have access to information regarding forces acting at the FAs, without a prior knowledge of the substrate stiffness or geometry, is able to reproduce both contact guidance and durotaxis.


Subject(s)
Cell Movement/physiology , Focal Adhesions/physiology , Models, Biological , Cell Communication , Hydrogels
5.
Phys Biol ; 15(6): 066009, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30132440

ABSTRACT

Motile biological cells in tissue often display the phenomenon of durotaxis, i.e. they tend to move towards stiffer parts of substrate tissue. The mechanism for this behavior is not completely understood. We consider simplified models for durotaxis based on the classic persistent random walker scheme. We show that even a one-dimensional model of this type sheds interesting light on the classes of behavior cells might exhibit. Our results strongly indicate that cells must be able to sense the gradient of stiffness in order to show the effects observed in experiment. This is in contrast to the claims in recent publications that it is sufficient for cells to be more persistent in their motion on stiff substrates to show durotaxis: i.e. it would be enough to sense the value of the stiffness. We show that these cases give rise to extremely inefficient transport towards stiff regions. Gradient sensing is almost certainly the selected behavior.


Subject(s)
Actin Cytoskeleton/physiology , Cell Movement/physiology , Models, Biological , Biomechanical Phenomena , Cellular Microenvironment/physiology , Surface Properties
6.
Nat Commun ; 8(1): 842, 2017 10 10.
Article in English | MEDLINE | ID: mdl-29018207

ABSTRACT

The structure and mechanics of tissues is constantly perturbed by endogenous forces originated from cells, and at the same time regulate many important cellular functions such as migration, differentiation, and growth. Here we show that 3D collagen gels, major components of connective tissues and extracellular matrix (ECM), are significantly and irreversibly remodeled by cellular traction forces, as well as by macroscopic strains. To understand this ECM plasticity, we develop a computational model that takes into account the sliding and merging of ECM fibers. We have confirmed the model predictions with experiment. Our results suggest the profound impacts of cellular traction forces on their host ECM during development and cancer progression, and suggest indirect mechanical channels of cell-cell communications in 3D fibrous matrices.The structure and mechanics of tissues is constantly perturbed by endogenous forces originated from cells. Here the authors show that 3D collagen gels, major components of connective tissues and extracellular matrix, are significantly and irreversibly remodelled by cellular traction forces and by macroscopic strains.


Subject(s)
Collagen/physiology , Extracellular Matrix/physiology , Models, Biological , Stress, Mechanical
7.
Phys Rev E ; 94(3-1): 032905, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27739833

ABSTRACT

The granular Leidenfrost effect [B. Meerson, et al., Phys. Rev. Lett. 91, 024301 (2003)PRLTAO0031-900710.1103/PhysRevLett.91.024301; P. Eshuis et al., Phys. Rev. Lett. 95, 258001 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.258001] is the levitation of a mass of granular matter when a wall below the grains is vibrated, giving rise to a hot granular gas below the cluster. We find by simulation that for a range of parameters the system is bistable: the levitated cluster can occasionally break and give rise to two clusters and a hot granular gas above and below. We use techniques from the theory of rare events to compute the mean transition time for breaking to occur. This requires the introduction of a two-component reaction coordinate.

8.
Phys Rev E ; 93(5): 052307, 2016 May.
Article in English | MEDLINE | ID: mdl-27300910

ABSTRACT

The brain can reproduce memories from partial data; this ability is critical for memory recall. The process of memory recall has been studied using autoassociative networks such as the Hopfield model. This kind of model reliably converges to stored patterns that contain the memory. However, it is unclear how the behavior is controlled by the brain so that after convergence to one configuration, it can proceed with recognition of another one. In the Hopfield model, this happens only through unrealistic changes of an effective global temperature that destabilizes all stored configurations. Here we show that spike-frequency adaptation (SFA), a common mechanism affecting neuron activation in the brain, can provide state-dependent control of pattern retrieval. We demonstrate this in a Hopfield network modified to include SFA, and also in a model network of biophysical neurons. In both cases, SFA allows for selective stabilization of attractors with different basins of attraction, and also for temporal dynamics of attractor switching that is not possible in standard autoassociative schemes. The dynamics of our models give a plausible account of different sorts of memory retrieval.


Subject(s)
Memory , Neural Networks, Computer , Behavior/physiology , Humans , Neurons/physiology
9.
Soft Matter ; 12(5): 1419-24, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26616428

ABSTRACT

Disordered biopolymer gels have striking mechanical properties including strong nonlinearities. In the case of athermal gels (such as collagen-I) the nonlinearity has long been associated with a crossover from a bending dominated to a stretching dominated regime of elasticity. The physics of this crossover is related to the existence of a central-force isostatic point and to the fact that for most gels the bending modulus is small. This crossover induces scaling behavior for the elastic moduli. In particular, for linear elasticity such a scaling law has been demonstrated [Broedersz et al. Nat. Phys., 2011 7, 983]. In this work we generalize the scaling to the nonlinear regime with a two-parameter scaling law involving three critical exponents. We test the scaling law numerically for two disordered lattice models, and find a good scaling collapse for the shear modulus in both the linear and nonlinear regimes. We compute all the critical exponents for the two lattice models and discuss the applicability of our results to real systems.


Subject(s)
Biopolymers/chemistry , Gels/chemistry , Elastic Modulus , Models, Theoretical
10.
PLoS Comput Biol ; 11(8): e1004449, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26295587

ABSTRACT

Acetylcholine (ACh) is a regulator of neural excitability and one of the neurochemical substrates of sleep. Amongst the cellular effects induced by cholinergic modulation are a reduction in spike-frequency adaptation (SFA) and a shift in the phase response curve (PRC). We demonstrate in a biophysical model how changes in neural excitability and network structure interact to create three distinct functional regimes: localized asynchronous, traveling asynchronous, and traveling synchronous. Our results qualitatively match those observed experimentally. Cortical activity during slow wave sleep (SWS) differs from that during REM sleep or waking states. During SWS there are traveling patterns of activity in the cortex; in other states stationary patterns occur. Our model is a network composed of Hodgkin-Huxley type neurons with a M-current regulated by ACh. Regulation of ACh level can account for dynamical changes between functional regimes. Reduction of the magnitude of this current recreates the reduction in SFA the shift from a type 2 to a type 1 PRC observed in the presence of ACh. When SFA is minimal (in waking or REM sleep state, high ACh) patterns of activity are localized and easily pinned by network inhomogeneities. When SFA is present (decreasing ACh), traveling waves of activity naturally arise. A further decrease in ACh leads to a high degree of synchrony within traveling waves. We also show that the level of ACh determines how sensitive network activity is to synaptic heterogeneity. These regimes may have a profound functional significance as stationary patterns may play a role in the proper encoding of external input as memory and traveling waves could lead to synaptic regularization, giving unique insights into the role and significance of ACh in determining patterns of cortical activity and functional differences arising from the patterns.


Subject(s)
Acetylcholine/metabolism , Cerebral Cortex/physiology , Cholinergic Agents/metabolism , Models, Neurological , Action Potentials/physiology , Computational Biology , Computer Simulation , Humans , Neurons/metabolism , Neurons/physiology , Potassium/metabolism , Sleep/physiology
11.
Article in English | MEDLINE | ID: mdl-25974530

ABSTRACT

We present a Landau-type theory for the nonlinear elasticity of biopolymer gels with a part of the order parameter describing induced nematic order of fibers in the gel. We attribute the nonlinear elastic behavior of these materials to fiber alignment induced by strain. We suggest an application to contact guidance of cell motility in tissue. We compare our theory to simulation of a disordered lattice model for biopolymers. We treat homogeneous deformations such as simple shear, hydrostatic expansion, and simple extension, and obtain good agreement between theory and simulation. We also consider a localized perturbation which is a simple model for a contracting cell in a medium.


Subject(s)
Biopolymers/chemistry , Gels/chemistry , Computer Simulation , Elasticity , Models, Chemical , Nonlinear Dynamics
12.
Cancer Res ; 74(17): 4588-96, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25183784

ABSTRACT

The first step in the spread of cancer is invasion by malignant cells of the normal tissue surrounding a tumor. There is considerable evidence both in vitro and in vivo that mechanical interactions with the tissue, in particular with the biopolymer network that makes up the extracellular matrix (ECM), are important factors in invasion. The interactions take two forms: (i) contractile cells on the surface of the tumor act on the nearby ECM and remodel it; in some cases, they align the fibers of the biopolymers; (ii) the aligned fibers can enhance invasion via contact guidance, the tendency of motile cells to follow alignment. Here, we give evidence, mainly for in vitro systems, that both effects are important. We discuss how alignment occurs in biopolymers such as collagen-I (a major component of the ECM). We propose a modeling framework for computing alignment and propose phenomenologic models for contact guidance. See all articles in this Cancer Research section, "Physics in Cancer Research."


Subject(s)
Cell Communication/physiology , Neoplasm Invasiveness/pathology , Neoplasms/pathology , Animals , Biomarkers, Tumor/metabolism , Cell Movement/physiology , Collagen/metabolism , Extracellular Matrix/pathology , Neoplasms/metabolism
13.
Article in English | MEDLINE | ID: mdl-25615124

ABSTRACT

We consider clustering of particles in the lattice gas model above the critical point. We find the probability for large density fluctuations over scales much larger than the correlation length. This fundamental problem is of interest in various biological contexts such as quorum sensing and clustering of motile, adhesive, cancer cells. In the latter case, it may give a clue to the problem of growth of recurrent tumors. We develop a formalism for the analysis of this rare event employing a phenomenological master equation and measuring the transition rates in numerical simulations. The spontaneous clustering is treated in the framework of the eikonal approximation to the master equation.

14.
J Biomech Eng ; 135(7): 71006, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23719979

ABSTRACT

Cells imbedded in biopolymer gels are important components of tissue engineering models and cancer tumor microenvironments. In both these cases, contraction of cells attached to the gel is an important phenomenon, and the nonlinear nature of most biopolymers (such as collagen) makes understanding the mechanics of the contraction a challenging problem. Here, we investigate a unique feature of such systems: a point source of contraction leads to substantial deformation of the environment, but large strains and large alignment of the fibers of the gel are confined to a small region surrounding the source. For fibroblasts in collagen-I, we estimate that the radius of this region is of order 90 µ. We investigate this idea using continuum estimates and a finite element code, and we point out experimental manifestations of the effect.


Subject(s)
Cell Physiological Phenomena/physiology , Collagen Type I/chemistry , Extracellular Matrix/physiology , Gels/chemistry , Mechanotransduction, Cellular/physiology , Models, Biological , Tissue Engineering/methods , Animals , Biomimetic Materials/chemistry , Cell Movement/physiology , Cell Polarity/physiology , Compressive Strength/physiology , Computer Simulation , Elastic Modulus/physiology , Extracellular Matrix/ultrastructure , Humans , Nonlinear Dynamics , Stress, Mechanical
15.
Phys Rev Lett ; 109(13): 138104, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-23030124

ABSTRACT

Many populations in nature are fragmented: they consist of local populations occupying separate patches. A local population is prone to extinction due to the shot noise of birth and death processes. A migrating population from another patch can dramatically delay the extinction. What is the optimal migration rate that minimizes the extinction risk of the whole population? Here, we answer this question for a connected network of model habitat patches with different carrying capacities.


Subject(s)
Animal Migration , Extinction, Biological , Models, Biological , Stochastic Processes
16.
Phys Rev Lett ; 109(24): 248102, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23368385

ABSTRACT

We consider population dynamics on a network of patches, having the same local dynamics, with different population scales (carrying capacities). It is reasonable to assume that if the patches are coupled by very fast migration the whole system will look like an individual patch with a large effective carrying capacity. This is called a "well-mixed" system. We show that, in general, it is not true that the total population has the same dynamics as each local patch when the migration is fast. Different global dynamics can emerge, and usually must be figured out for each individual case. We give a general condition which must be satisfied for the total population to have the same dynamics as the constituent patches.


Subject(s)
Models, Theoretical , Population Dynamics
17.
J Chem Phys ; 133(17): 174107, 2010 Nov 07.
Article in English | MEDLINE | ID: mdl-21054006

ABSTRACT

We introduce a new forward flux sampling in time algorithm to efficiently measure transition times in rare-event processes in nonequilibrium systems and apply it to study the first-order (discontinuous) kinetic transition in the Ziff-Gulari-Barshad model of catalytic surface reaction. The average time for the transition to take place, as well as both the spinodal and transition points, is efficiently found by this method.

18.
Phys Biol ; 7(4): 046008, 2010 Nov 12.
Article in English | MEDLINE | ID: mdl-21076203

ABSTRACT

Networks can be dynamical systems that undergo functional and structural reorganization. One example of such a process is adult hippocampal neurogenesis, in which new cells are continuously born and incorporate into the existing network of the dentate gyrus region of the hippocampus. Many of these introduced cells mature and become indistinguishable from established neurons, joining the existing network. Activity in the network environment is known to promote birth, survival and incorporation of new cells. However, after epileptogenic injury, changes to the connectivity structure around the neurogenic niche are known to correlate with aberrant neurogenesis. The possible role of network-level changes in the development of epilepsy is not well understood. In this paper, we use a computational model to investigate how the structural and functional outcomes of network reorganization, driven by addition of new cells during neurogenesis, depend on the original network structure. We find that there is a stable network topology that allows the network to incorporate new neurons in a manner that enhances activity of the persistently active region, but maintains global network properties. In networks having other connectivity structures, new cells can greatly alter the distribution of firing activity and destroy the initial activity patterns. We thus find that new cells are able to provide focused enhancement of network only for small-world networks with sufficient inhibition. Network-level deviations from this topology, such as those caused by epileptogenic injury, can set the network down a path that develops toward pathological dynamics and aberrant structural integration of new cells.


Subject(s)
Hippocampus/cytology , Neural Networks, Computer , Neurogenesis , Adult , Humans , Neurons/cytology
19.
Biophys J ; 99(1): 50-8, 2010 Jul 07.
Article in English | MEDLINE | ID: mdl-20655832

ABSTRACT

The crawling motion of Dictyostelium discoideum on substrata involves a number of coordinated events including cell contractions and cell protrusions. The mechanical forces exerted on the substratum during these contractions have recently been quantified using traction force experiments. Based on the results from these experiments, we present a biomechanical model of the contraction phase of Dictyostelium discoideum motility with an emphasis on the adhesive properties of the cell-substratum contact. Our model assumes that the cell contracts at a constant rate and is bound to the substratum by adhesive bridges that are modeled as elastic springs. These bridges are established at a spatially uniform rate while detachment occurs at a spatially varying, load-dependent rate. Using Monte Carlo simulations and assuming a rigid substratum, we find that the cell speed depends only weakly on the detachment kinetics of the cell-substratum interface, in agreement with experimental data. By varying the parameters that control the adhesive and contractile properties of the cell, we are able to make testable predictions. We also extend our model to include a flexible substrate and show that our model is able to produce substratum deformations and force patterns that are quantitatively and qualitatively in agreement with experimental data.


Subject(s)
Dictyostelium/cytology , Dictyostelium/physiology , Models, Biological , Movement , Cell Adhesion , Elasticity , Kinetics
20.
Theor Popul Biol ; 77(4): 279-86, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20214914

ABSTRACT

Dispersal is an important strategy that allows organisms to locate and exploit favorable habitats. The question arises: given competition in a spatially heterogeneous landscape, what is the optimal rate of dispersal? Continuous population models predict that a species with a lower dispersal rate always drives a competing species to extinction in the presence of spatial variation of resources. However, the introduction of intrinsic demographic stochasticity can reverse this conclusion. We present a simple model in which competition between the exploitation of resources and stochastic fluctuations leads to victory by either the faster or slower of two species depending on the environmental parameters. A simplified limiting case of the model, analyzed by closing the moment and correlation hierarchy, quantitatively predicts which species will win in the complete model under given parameters of spatial variation and average carrying capacity.


Subject(s)
Competitive Behavior , Demography , Population Dynamics , Animals , Ecosystem , Models, Statistical , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...