Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 510
Filter
1.
Clin Nutr ; 43(7): 1809-1815, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38870661

ABSTRACT

BACKGROUND: Cachexia-associated body composition alterations and tumor metabolic activity are both associated with survival of cancer patients. Recently, subcutaneous adipose tissue properties have emerged as particularly prognostic body composition features. We hypothesized that tumors with higher metabolic activity instigate cachexia related peripheral metabolic alterations, and investigated whether tumor metabolic activity is associated with body composition and survival in patients with non-small-cell lung cancer (NSCLC), focusing on subcutaneous adipose tissue. METHODS: A retrospective analysis was performed on a cohort of 173 patients with NSCLC. 18F-fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) scans obtained before treatment were used to analyze tumor metabolic activity (standardized uptake value (SUV) and SUV normalized by lean body mass (SUL)) as well as body composition variables (subcutaneous and visceral adipose tissue radiodensity (SAT/VAT radiodensity) and area; skeletal muscle radiodensity (SM radiodensity) and area). Subjects were divided into groups with high or low SAT radiodensity based on Youden Index of Receiver Operator Characteristics (ROC). Associations between tumor metabolic activity, body composition variables, and survival were analyzed by Mann-Whitney tests, Cox regression, and Kaplan-Meier analysis. RESULTS: The overall prevalence of high SAT radiodensity was 50.9% (88/173). Patients with high SAT radiodensity had shorter survival compared with patients with low SAT radiodensity (mean: 45.3 vs. 50.5 months, p = 0.026). High SAT radiodensity was independently associated with shorter overall survival (multivariate Cox regression HR = 1.061, 95% CI: 1.022-1.101, p = 0.002). SAT radiodensity also correlated with tumor metabolic activity (SULpeak rs = 0.421, p = 0.029; SUVpeak rs = 0.370, p = 0.048). In contrast, the cross-sectional areas of SM, SAT, and VAT were not associated with tumor metabolic activity or survival. CONCLUSION: Higher SAT radiodensity is associated with higher tumor metabolic activity and shorter survival in patients with NSCLC. This may suggest that tumors with higher metabolic activity induce subcutaneous adipose tissue alterations such as decreased lipid density, increased fibrosis, or browning.

2.
Transpl Int ; 37: 12468, 2024.
Article in English | MEDLINE | ID: mdl-38699175

ABSTRACT

Kidney organoids are an innovative tool in transplantation research. The aim of the present study was to investigate whether kidney organoids are susceptible for allo-immune attack and whether they can be used as a model to study allo-immunity in kidney transplantation. Human induced pluripotent stem cell-derived kidney organoids were co-cultured with human peripheral blood mononuclear cells (PBMC), which resulted in invasion of allogeneic T-cells around nephron structures and macrophages in the stromal cell compartment of the organoids. This process was associated with the induction of fibrosis. Subcutaneous implantation of kidney organoids in immune-deficient mice followed by adoptive transfer of human PBMC led to the invasion of diverse T-cell subsets. Single cell transcriptomic analysis revealed that stromal cells in the organoids upregulated expression of immune response genes upon immune cell invasion. Moreover, immune regulatory PD-L1 protein was elevated in epithelial cells while genes related to nephron differentiation and function were downregulated. This study characterized the interaction between immune cells and kidney organoids, which will advance the use of kidney organoids for transplantation research.


Subject(s)
Kidney Transplantation , Kidney , Organoids , Humans , Organoids/immunology , Animals , Kidney/immunology , Mice , Coculture Techniques , Leukocytes, Mononuclear/immunology , Induced Pluripotent Stem Cells/cytology , T-Lymphocytes/immunology , Immune System , B7-H1 Antigen/metabolism , Macrophages/immunology
3.
Article in English | MEDLINE | ID: mdl-38725139

ABSTRACT

BACKGROUND: Cancer cachexia is a multifactorial metabolic syndrome characterized by systemic inflammation and ongoing skeletal muscle loss resulting in weakness, poor quality of life, and decreased survival. Whereas lipid accumulation in skeletal muscle is associated with cancer cachexia as well as the prognosis of cancer patients, surprisingly little is known about the nature of the lipids that accumulate in the muscle during cachexia, and whether this is related to inflammation. We aimed to identify the types and distributions of intramyocellular lipids in patients with and without cancer cachexia. METHODS: Rectus abdominis muscle biopsies were collected during surgery of patients with pancreatic ductal adenocarcinoma (n = 10 without cachexia, n = 20 cachectic without inflammation (CRP < 10 mg/L), n = 10 cachectic with inflammation (CRP ≥ 10 mg/L). L3-CT scans were analysed to assess body composition based on validated thresholds in Hounsfield units (HU). Muscle sections were stained with Oil-Red O and H&E to assess general lipid accumulation and atrophy. Untargeted lipidomic analyses were performed on laser-microdissected myotubes using LC-MS/MS. The spatial distribution of intramyocellular lipids with differential abundance between groups was visualized by mass-spectrometry imaging. Genes coding for inflammation markers and enzymes involved in de novo ceramide synthesis were studied by qPCR. RESULTS: Muscle radiation attenuation was lower in cachectic patients with inflammation (median 24.3 [18.6-30.8] HU) as compared with those without inflammation (34.2 [29.3-38.7] HU, P = 0.033) or no cachexia (37.4 [33.9-42.9] HU, P = 0.012). Accordingly, intramyocellular lipid content was lower in non-cachectic patients (1.9 [1.6-2.1]%) as compared with those with cachexia with inflammation (5.5 [4.5-7.3]%, P = 0.002) or without inflammation (4.8 [2.6-6.0]%, P = 0.017). Intramyocellular lipid accumulation was associated with both local IL-6 mRNA levels (rs = 0.57, P = 0.015) and systemic CRP levels (rs = 0.49, P = 0.024). Compared with non-cachectic subjects, cachectic patients had a higher relative abundance of intramyocellular glycerophospholipids and a lower relative abundance of glycerolipids. Furthermore, increases in several intramyocellular lipids such as SM(d36:1), PC(34:1), and TG(48:1) were found in cachectic patients with inflammation and correlated with specific cachexia features. Altered intramyocellular lipid species such as PC(34:1), LPC(18:2), and TG(48:1) showed an uneven distribution in muscle sections of cachectic and non-cachectic patients, with areas featuring abundance of these lipids next to areas almost devoid of them. CONCLUSIONS: Intramyocellular lipid accumulation in patients with cachexia is associated with both local and systemic inflammation, and characterized by changes in defined lipid species such as glycerolipids and glycerophospholipids.

4.
Transplant Direct ; 10(6): e1605, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38715978

ABSTRACT

Background: Organ shortage remains a major challenge for the field of transplantation. Maximizing utilization and minimizing discard of available organs is crucial to reduce waitlist times. Our aim was to investigate the landscape of liver recovery, discard over the past decade in the United States, and identify areas to reduce organ discard. Methods: This study used the Scientific Registry of Transplant Recipients United Network for Organ Sharing database to analyze the rates and associated reasons of discarded organs from 2010 to 2021. All deceased donors were evaluated, and data were analyzed by organ type, year, and region. Organ disposition was analyzed by year and region. Donor demographics and liver biopsy data were also analyzed. Results: The volume of liver transplantation increased steadily, with a 44% increase from 2010 to 2021. Donation after circulatory death transplantation increased by 239%, comprising 10.6% of transplants in 2021, yet discard rates remained high at 30% for this donor subset. For all donor types, the liver discard rate has remained stable around 10% despite a 74% increase in available donors. Seventy percent of liver discards were attributed to organ factors, with biopsy findings accounting for 40% of all discards. Of livers that were biopsied, 70% had macrosteatosis of <30%. Conclusions: Analysis of trends in transplantation and discard allow for identifying areas of underutilization. Donation after circulatory death livers have expanded the pool of transplanted livers but remain discarded at high rates. Significant differences remain in discard rates between geographic regions. We identify several areas to lower the discard rates. The expanding role of machine perfusion may allow for utilization of previously discarded organs.

5.
Appl Microbiol Biotechnol ; 108(1): 349, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809317

ABSTRACT

Galacto-oligosaccharides (GOS) are prebiotic compounds that are mainly used in infant formula to mimic bifidogenic effects of mother's milk. They are synthesized by ß-galactosidase enzymes in a trans-glycosylation reaction with lactose. Many ß-galactosidase enzymes from different sources have been studied, resulting in varying GOS product compositions and yields. The in vivo role of these enzymes is in lactose hydrolysis. Therefore, the best GOS yields were achieved at high lactose concentrations up to 60%wt, which require a relatively high temperature to dissolve. Some thermostable ß-glucosidase enzymes from thermophilic bacteria are also capable of using lactose or para nitrophenyl-galactose as a substrate. Here, we describe the use of the ß-glucosidase BglA from Thermotoga maritima for synthesis of oligosaccharides derived from lactose and cellobiose and their detailed structural characterization. Also, the BglA enzyme kinetics and yields were determined, showing highest productivity at higher lactose and cellobiose concentrations. The BglA trans-glycosylation/hydrolysis ratio was higher with 57%wt lactose than with a nearly saturated cellobiose (20%wt) solution. The yield of GOS was very high, reaching 72.1%wt GOS from lactose. Structural elucidation of the products showed mainly ß(1 → 3) and ß(1 → 6) elongating activity, but also some ß(1 → 4) elongation was observed. The ß-glucosidase BglA from T. maritima was shown to be a very versatile enzyme, producing high yields of oligosaccharides, particularly GOS from lactose. KEY POINTS: • ß-Glucosidase of Thermotoga maritima synthesizes GOS from lactose at very high yield. • Thermotoga maritima ß-glucosidase has high activity and high thermostability. • Thermotoga maritima ß-glucosidase GOS contains mainly (ß1-3) and (ß1-6) linkages.


Subject(s)
Cellobiose , Lactose , Oligosaccharides , Thermotoga maritima , beta-Glucosidase , Thermotoga maritima/enzymology , Thermotoga maritima/genetics , Lactose/metabolism , Cellobiose/metabolism , beta-Glucosidase/metabolism , beta-Glucosidase/genetics , beta-Glucosidase/chemistry , Kinetics , Oligosaccharides/metabolism , Glycosylation , Hydrolysis , Temperature , Enzyme Stability
6.
Heliyon ; 10(3): e24539, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38317966

ABSTRACT

Oligosaccharides and sialic acids (Sia) are bioactive components in milk that contribute to newborn development and health. Hyperglycemia in pregnancy (HIP) can have adverse effects on both mother and infant. HIP is associated with low-grade systemic inflammation. Inflammation influenced glycan composition, particularly of Sia-containing structures. We hypothesize that HIP and high-fat diet influence milk oligosaccharide composition, particularly sialylated oligosaccharides. Furthermore, we propose that milk Sia content influences pup brain Sia content. To test these hypotheses we (i) characterize mouse milk oligosaccharides and Sia concentrations in mouse milk of a GDM mouse model with dietary fat intake intervention; and (ii) determine Sia levels in offspring brains. The concentrations of oligosaccharides and Sia in mouse milk and offspring's brains were quantified using UPLC-FLD analysis. Analyses were performed on surplus samples from a previous study, where HIP was induced by combining high-fat diet (HF) feeding and low-dose streptozotocin injections in C57Bl/6NTac female mice. The previous study described the metabolic effects of HIP on dams and offspring. We detected 21 mouse milk oligosaccharides, including 9 neutral and 12 acidic structures using UPLC-MS. A total of 8 structures could be quantified using UPLC-FLD. Maternal HIP and HF diet during lactation influenced sialylated oligosaccharide concentrations in mouse milk and total and free sialic acid concentrations. Sia content in offspring brain was associated with total and free Neu5Gc in mouse milk of dams, but no correlations with HIP or maternal diet were observed.

7.
Clin Transplant ; 38(2): e15259, 2024 02.
Article in English | MEDLINE | ID: mdl-38375952

ABSTRACT

BACKGROUND: Guidelines recommend kidney transplant alone (KTA) in compensated cirrhosis based on a few small studies, but this is not widely performed despite its potential benefit to patients and the organ supply. Our aim was to determine the outcomes of KTA in patients with compensated cirrhosis. STUDY DESIGN: From 1/2012 to 12/2021, outcomes in KTA recipients with compensated cirrhosis were retrospectively compared to patients with chronic liver disease (CLD) but no cirrhosis. Patients with compensated cirrhosis were also compared to a matched cohort (based on age, time on hemodialysis, sex, and ethnicity) of KTA recipients without CLD. The outcomes included patient survival, allograft failure, allograft rejection, serious infection, liver decompensation, and length of stay (LOS). RESULTS: Over 9 years, 1562 KTAs were performed, with 150 (9.6%) patients having CLD mostly due to chronic hepatitis C, and a median follow-up of 3.5 years. 32/150 (21%) had compensated cirrhosis at the time of KTA with a mean MELD-Na of 22 (1.5). Matched controls (n = 189) were identified. We found no differences in patient survival (p = .07), allograft failure (p = .6), allograft rejection (p = .43), rates of serious infection (p = .31), as well as LOS (p = .61) among patients with compensated cirrhosis compared to patients with CLD but no cirrhosis, but with higher rates of liver decompensation (p = .004). Similarly, compared to patients without CLD, patients with cirrhosis had similar rates of patient survival (p = .20), allograft failure (p = .27), allograft rejection (p = .62) and LOS (p = .19) but with higher rates of serious infections (p = .001). CONCLUSIONS: Our study supports the safety and efficacy of KTA in patients with compensated cirrhosis.


Subject(s)
Kidney Transplantation , Humans , Kidney Transplantation/adverse effects , Case-Control Studies , Retrospective Studies , Liver Cirrhosis/complications , Liver Cirrhosis/surgery , Transplantation, Homologous
8.
Cancers (Basel) ; 16(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38339292

ABSTRACT

Patients with pancreatic cancer often suffer from cachexia and experience gastrointestinal symptoms that may be related to intestinal smooth muscle cell (SMC) dysfunction. We hypothesized that pancreatic tumor organoids from cachectic patients release factors that perturb the SMC's contractile characteristics. Human visceral SMCs were exposed to conditioned medium (CM) from the pancreatic tumor organoid cultures of cachectic (n = 2) and non-cachectic (n = 2) patients. Contractile proteins and markers of inflammation, muscle atrophy, and proliferation were evaluated by qPCR and Western blot. SMC proliferation and migration were monitored by live cell imaging. The Ki-67-positive cell fraction was determined in the intestinal smooth musculature of pancreatic cancer patients. CM from the pancreatic tumor organoids of cachectic patients did not affect IL-1ß, IL-6, IL-8, MCP-1, or Atrogin-1 expression. However, CM reduced the α-SMA, γ-SMA, and SM22-α levels, which was accompanied by a reduced SMC doubling time and increased expression of S100A4, a Ca2+-binding protein associated with the synthetic SMC phenotype. In line with this, Ki-67-positive nuclei were increased in the intestinal smooth musculature of patients with a low versus high L3-SMI. In conclusion, patient-derived pancreatic tumor organoids release factors that compromise the contractile SMC phenotype and increase SMC proliferation. This may contribute to the frequently observed gastrointestinal motility problems in these patients.

9.
Nature ; 625(7996): 813-821, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38172637

ABSTRACT

Although the impact of host genetics on gut microbial diversity and the abundance of specific taxa is well established1-6, little is known about how host genetics regulates the genetic diversity of gut microorganisms. Here we conducted a meta-analysis of associations between human genetic variation and gut microbial structural variation in 9,015 individuals from four Dutch cohorts. Strikingly, the presence rate of a structural variation segment in Faecalibacterium prausnitzii that harbours an N-acetylgalactosamine (GalNAc) utilization gene cluster is higher in individuals who secrete the type A oligosaccharide antigen terminating in GalNAc, a feature that is jointly determined by human ABO and FUT2 genotypes, and we could replicate this association in a Tanzanian cohort. In vitro experiments demonstrated that GalNAc can be used as the sole carbohydrate source for F. prausnitzii strains that carry the GalNAc-metabolizing pathway. Further in silico and in vitro studies demonstrated that other ABO-associated species can also utilize GalNAc, particularly Collinsella aerofaciens. The GalNAc utilization genes are also associated with the host's cardiometabolic health, particularly in individuals with mucosal A-antigen. Together, the findings of our study demonstrate that genetic associations across the human genome and bacterial metagenome can provide functional insights into the reciprocal host-microbiome relationship.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Host Microbial Interactions , Metagenome , Humans , Acetylgalactosamine/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Cohort Studies , Computer Simulation , Faecalibacterium prausnitzii/genetics , Gastrointestinal Microbiome/genetics , Genome, Human/genetics , Genotype , Host Microbial Interactions/genetics , In Vitro Techniques , Metagenome/genetics , Multigene Family , Netherlands , Tanzania
10.
J Endourol ; 38(2): 136-141, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185847

ABSTRACT

Purpose: To compare the intra- and postoperative outcomes of single-port robotic donor nephrectomies (SP RDNs) and laparoscopic donor nephrectomies (LDNs). Materials and Methods: We retrospectively reviewed our institutional database for patients who received LDN or SP RDN between September 2020 and December 2022. Donor baseline characteristics, intraoperative outcomes, postoperative outcomes, and recipient renal function were extracted and compared between LDN and SP RDN. SP RDN learning curve analysis based on operative time and graft extraction time was performed using cumulative sum analysis. Results: One hundred forty-four patients underwent LDN and 32 patients underwent SP RDN. LDN and SP RDN had similar operative times (LDN: 190.3 ± 28.0 minutes, SP RDN: 194.5 ± 35.1 minutes, p = 0.3253). SP RDN patients had significantly greater extraction times (LDN: 83.2 ± 40.3 seconds, SP RDN: 204.1 ± 52.2 seconds, p < 0.0001) and warm ischemia times (LDN: 145.1 ± 61.7 seconds, SP RDN: 275.4 ± 65.6 seconds, p < 0.0001). There were no differences in patient subjective pain scores, inpatient opioid usage, or Clavien-Dindo II+ complications. Short- and medium-term postoperative donor and recipient renal function were also similar between the groups. SP RDN graft extraction time and total operative time learning curves were achieved at case 27 and 13, respectively. Conclusion: SP RDN is a safe and feasible alternative to LDN that minimizes postoperative abdominal incisional scars and has a short learning curve. Future randomized prospective clinical trials are needed to confirm the findings of this study and to identify other potential benefits and drawbacks of SP RDNs.


Subject(s)
Kidney Transplantation , Laparoscopy , Robotic Surgical Procedures , Humans , Retrospective Studies , Nephrectomy , Prospective Studies , Living Donors , Kidney , Tissue and Organ Harvesting
11.
Ann Surg ; 279(1): 104-111, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37522174

ABSTRACT

OBJECTIVE: To evaluate long-term oncologic outcomes of patients post-living donor liver transplantation (LDLT) within and outside standard transplantation selection criteria and the added value of the incorporation of the New York-California (NYCA) score. BACKGROUND: LDLT offers an opportunity to decrease the liver transplantation waitlist, reduce waitlist mortality, and expand selection criteria for patients with hepatocellular carcinoma (HCC). METHODS: Primary adult LDLT recipients between October 1999 and August 2019 were identified from a multicenter cohort of 12 North American centers. Posttransplantation and recurrence-free survival were evaluated using the Kaplan-Meier method. RESULTS: Three hundred sixty LDLTs were identified. Patients within Milan criteria (MC) at transplantation had a 1, 5, and 10-year posttransplantation survival of 90.9%, 78.5%, and 64.1% versus outside MC 90.4%, 68.6%, and 57.7% ( P = 0.20), respectively. For patients within the University of California San Francisco (UCSF) criteria, respective posttransplantation survival was 90.6%, 77.8%, and 65.0%, versus outside UCSF 92.1%, 63.8%, and 45.8% ( P = 0.08). Fifty-three (83%) patients classified as outside MC at transplantation would have been classified as either low or acceptable risk with the NYCA score. These patients had a 5-year overall survival of 72.2%. Similarly, 28(80%) patients classified as outside UCSF at transplantation would have been classified as a low or acceptable risk with a 5-year overall survival of 65.3%. CONCLUSIONS: Long-term survival is excellent for patients with HCC undergoing LDLT within and outside selection criteria, exceeding the minimum recommended 5-year rate of 60% proposed by consensus guidelines. The NYCA categorization offers insight into identifying a substantial proportion of patients with HCC outside the MC and the UCSF criteria who still achieve similar post-LDLT outcomes as patients within the criteria.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Liver Transplantation , Adult , Humans , Liver Transplantation/methods , Living Donors , Neoplasm Recurrence, Local/etiology , Patient Selection , North America , Retrospective Studies , Treatment Outcome
13.
Food Res Int ; 174(Pt 1): 113589, 2023 12.
Article in English | MEDLINE | ID: mdl-37986455

ABSTRACT

Human milk is considered the optimal food for infants with abundant nutrients and bioactive components, which play key roles in infant health and development. Infant formulas represent appropriate substitutes for human milk. There are many brands of infant formula with different ingredient sources and functions on the market. The present study aims to quantify important bioactive components, i.e., milk oligosaccharides (MOS), sialic acids (Sia) and corticosteroids, in different infant formulas and compare these to human milk. In total, 12 different infant formulas available on the Dutch market were analyzed in this study. The concentrations of MOS and Sia were characterized by UHPLC-FLD and LC-MS, while corticosteroids were determined using established UHPLC-MS/MS methods. Among infant formulas, 15 structures of oligosaccharides were identified, of which 2'-Fucosyllactose (2'FL), 3'-Galactosyllactose (3'GL) and 6'-Galactosyllactose (6́'GL) were found in all infant formulas. The oligosaccharide concentrations differed between milk source and brands and were 3-5 times lower than in human milk. All infant formulas contained Sia, N-acetylneuraminic acid (Neu5Ac) was dominant in bovine milk-based formulas, while N-glycolylneuraminic acid (Neu5Gc) was major in goat milk-based formula. All infant formulas contained corticosteroids, yet, at lower concentrations than human milk. Insight in concentrations of bioactive components in infant formula compared to human milk may give direction to dietary advices and/or novel formula design.


Subject(s)
Infant Formula , Sialic Acids , Infant , Humans , Infant Formula/chemistry , Sialic Acids/analysis , Tandem Mass Spectrometry , Milk, Human/chemistry , Oligosaccharides/analysis , Adrenal Cortex Hormones/analysis
14.
JMIR Res Protoc ; 12: e46526, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37676715

ABSTRACT

BACKGROUND: Morbidity rates in pancreatic surgery are high, and frail patients with low aerobic capacity are especially at risk of complications and require prophylactic interventions. Previous studies of small patient cohorts receiving intra-abdominal surgery have shown that an exercise prehabilitation program increases aerobic capacity, leading to better treatment outcomes. OBJECTIVE: In this study, we aim to assess the feasibility of a home-based exercise prehabilitation program in unfit patients scheduled for pancreatic surgery on a larger scale. METHODS: In this multicenter study, adult patients scheduled for elective pancreatic surgery with a preoperative oxygen uptake (VO2) at the ventilatory anaerobic threshold ≤13 mL/kg/min or a VO2 at peak exercise ≤18 mL/kg/min will be recruited. A total of 30 patients will be included in the 4-week, home-based, partly supervised exercise prehabilitation program. The program comprises 25-minute high-intensity interval training on an advanced cycle ergometer 3 times a week. Training intensity will be based on steep ramp test performance (ie, a short-term maximal exercise test on a cycle ergometer), aiming to improve aerobic capacity. Twice a week, patients will perform functional task exercises to improve muscle function and functional mobility. A steep ramp test will be repeated weekly, and training intensity will be adjusted accordingly. Next to assessing the feasibility (participation rate, reasons for nonparticipation, adherence, dropout rate, reasons for dropout, adverse events, and patient and therapist appreciation) of this program, individual patients' responses to prehabilitation on aerobic capacity, functional mobility, body composition, quality of life, and immune system factors will be evaluated. RESULTS: Recruitment for this study began in January 2022 and is expected to be completed in the summer of 2023. CONCLUSIONS: Results of this study will provide important clinical and scientific knowledge on the feasibility of a partly supervised home-based exercise prehabilitation program in a vulnerable patient population. This might ease the path to implementing prehabilitation programs in unfit patients undergoing complex abdominal surgery, such as pancreatic surgery. TRIAL REGISTRATION: ClinicalTrials.gov NCT05496777; https://classic.clinicaltrials.gov/ct2/show/NCT05496777. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/46526.

15.
Front Oncol ; 13: 1062937, 2023.
Article in English | MEDLINE | ID: mdl-37637046

ABSTRACT

Background: Computerized radiological image analysis (radiomics) enables the investigation of image-derived phenotypes by extracting large numbers of quantitative features. We hypothesized that radiomics features may contain prognostic information that enhances conventional body composition analysis. We aimed to investigate whether body composition-associated radiomics features hold additional value over conventional body composition analysis and clinical patient characteristics used to predict survival of pancreatic ductal adenocarcinoma (PDAC) patients. Methods: Computed tomography images of 304 patients undergoing elective pancreatic cancer resection were analysed. 2D radiomics features were extracted from skeletal muscle and subcutaneous and visceral adipose tissue (SAT and VAT) compartments from a single slice at the third lumbar vertebra. The study population was randomly split (80:20) into training and holdout subsets. Feature ranking with Least Absolute Shrinkage Selection Operator (LASSO) followed by multivariable stepwise Cox regression in 1000 bootstrapped re-samples of the training data was performed and tested on the holdout data. The fitted regression predictors were used as "scores" for a clinical (C-Score), body composition (B-Score), and radiomics (R-Score) model. To stratify patients into the highest 25% and lowest 25% risk of mortality compared to the middle 50%, the Harrell Concordance Index was used. Results: Based on LASSO and stepwise cox regression for overall survival, ASA ≥3 and age were the most important clinical variables and constituted the C-score, and VAT-index (VATI) was the most important body composition variable and constituted the B-score. Three radiomics features (SATI_original_shape2D_Perimeter, VATI_original_glszm_SmallAreaEmphasis, and VATI_original_firstorder_Maximum) emerged as the most frequent set of features and yielded an R-Score. Of the mean concordance indices of C-, B-, and R-scores, R-score performed best (0.61, 95% CI 0.56-0.65, p<0.001), followed by the C-score (0.59, 95% CI 0.55-0.63, p<0.001) and B-score (0.55, 95% CI 0.50-0.60, p=0.03). Kaplan-Meier projection revealed that C-, B, and R-scores showed a clear split in the survival curves in the training set, although none remained significant in the holdout set. Conclusion: It is feasible to implement a data-driven radiomics approach to body composition imaging. Radiomics features provided improved predictive performance compared to conventional body composition variables for the prediction of overall survival of PDAC patients undergoing primary resection.

16.
Int J Biol Macromol ; 252: 126452, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37619677

ABSTRACT

The transglucosidase activity of GH31 α-glucosidases is employed to catalyze the synthesis of prebiotic isomaltooligosaccharides (IMOs) using the malt syrup prepared from starch as substrate. Continuous mining for new GH31 α-glucosidases with high stability and efficient transglucosidase activity is critical for enhancing the supply and quality of IMO preparations. In the present study, two α-glucosidases (MT31α1 and MT31α2) from Myceliophthora thermophila were explored for biochemical characterization. The optimum pH and temperature of MT31α1 and MT31α2 were determined to be pH 4.5 and 65 °C, and pH 6.5 and 60 °C, respectively. Both MT31α1 and MT31α2 were shown to be stable in the pH range of 3.0 to 10.0. MT31α1 displayed a high thermostability, retaining 60 % of activity after incubation for 24 h at 55 °C. MT31α1 is highly active on substrates with all types of α-glucosidic linkages. In contrast, MT31α2 showed preference for substrates with α-(1→3) and α-(1→4) linkages. Importantly, MT31α1 was able to synthesize IMOs and the conversion rate of maltose into the main functional IMOs components reached over 40 %. Moreover, MT31α2 synthesizes glucooligosaccharides with (consecutive) α-(1→3) linkages. Taken together, MT31α1 and MT31α2, showing distinct substrate and product specificity, hold clear potential for the synthesis of prebiotic glucooligosaccharides.


Subject(s)
Sordariales , alpha-Glucosidases , alpha-Glucosidases/metabolism , Glycoside Hydrolases/metabolism , Sordariales/metabolism , Maltose/metabolism , Substrate Specificity
17.
Front Immunol ; 14: 1133796, 2023.
Article in English | MEDLINE | ID: mdl-37520563

ABSTRACT

Introduction: Pancreatic cancer is associated with poor prognosis, and limited treatment options are available for the majority of patients. Natural killer (NK) cells in combination with antibodies inducing antibody-dependent cell-mediated cytotoxicity (ADCC) could be a highly effective new therapeutic option in pancreatic cancer. Accurate predictive preclinical models are needed to develop successful NK cell immunotherapy. Tumor organoids, in vitro 3D organ-like structures that retain important pathophysiological characteristics of the in vivo tumor, may provide such a model. In the current study, we assessed the cytotoxic potential of adoptive NK cells against human pancreatic cancer organoids. We hypothesized that NK cell anti-tumor responses could be enhanced by including ADCC-triggering antibodies. Methods: We performed cytotoxicity assays with healthy donor-derived IL-2-activated NK cells and pancreatic cancer organoids from four patients. A 3D cytotoxicity assay using live-cell-imaging was developed and enabled real-time assessment of the response. Results: We show that NK cells migrate to and target pancreatic cancer organoids, resulting in an increased organoid death, compared to the no NK cell controls (reaching an average fold change from baseline of 2.1±0.8 vs 1.4±0.6). After 24-hours of co-culture, organoid 2D growth increased. Organoids from 2 out of 4 patients were sensitive to NK cells, while organoids from the other two patients were relatively resistant, indicating patient-specific heterogeneity among organoid cultures. The ADCC-inducing antibodies avelumab (anti-PD-L1) and trastuzumab (anti-HER2) increased NK cell-induced organoid cell death (reaching an average fold change from baseline of 3.5±1.0 and 4.5±1.8, respectively). Moreover, combination therapy with avelumab or trastuzumab resulted in complete disintegration of organoids. Finally, inclusion of ADCC-inducing antibodies was able to overcome resistance in NK-organoid combinations with low or no kill. Discussion: These results support the use of organoids as a relevant and personalized model to study the anti-tumor response of NK cells in vitro and the potential of ADCC-inducing antibodies to enhance NK cell effector function.


Subject(s)
Antibodies, Monoclonal , Pancreatic Neoplasms , Humans , Antibodies, Monoclonal/therapeutic use , Antibody-Dependent Cell Cytotoxicity , Trastuzumab/pharmacology , Trastuzumab/metabolism , Killer Cells, Natural , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms
18.
Front Bioeng Biotechnol ; 11: 1184408, 2023.
Article in English | MEDLINE | ID: mdl-37388767

ABSTRACT

Introduction: Despite progress in whole-organ decellularization and recellularization, maintaining long-term perfusion in vivo remains a hurdle to realizing clinical translation of bioengineered kidney grafts. The objectives for the present study were to define a threshold glucose consumption rate (GCR) that could be used to predict in vivo graft hemocompatibility and utilize this threshold to assess the in vivo performance of clinically relevant decellularized porcine kidney grafts recellularized with human umbilical vein endothelial cells (HUVECs). Materials and methods: Twenty-two porcine kidneys were decellularized and 19 were re-endothelialized using HUVECs. Functional revascularization of control decellularized (n = 3) and re-endothelialized porcine kidneys (n = 16) was tested using an ex vivo porcine blood flow model to define an appropriate metabolic glucose consumption rate (GCR) threshold above which would sustain patent blood flow. Re-endothelialized grafts (n = 9) were then transplanted into immunosuppressed pigs with perfusion measured using angiography post-implant and on days 3 and 7 with 3 native kidneys used as controls. Patent recellularized kidney grafts underwent histological analysis following explant. Results: The glucose consumption rate of recellularized kidney grafts reached a peak of 39.9 ± 9.7 mg/h at 21 ± 5 days, at which point the grafts were determined to have sufficient histological vascular coverage with endothelial cells. Based on these results, a minimum glucose consumption rate threshold of 20 mg/h was set. The revascularized kidneys had a mean perfusion percentage of 87.7% ± 10.3%, 80.9% ± 33.1%, and 68.5% ± 38.6% post-reperfusion on Days 0, 3 and 7, respectively. The 3 native kidneys had a mean post-perfusion percentage of 98.4% ± 1.6%. These results were not statistically significant. Conclusion: This study is the first to demonstrate that human-scale bioengineered porcine kidney grafts developed via perfusion decellularization and subsequent re-endothelialization using HUVEC can maintain patency with consistent blood flow for up to 7 days in vivo. These results lay the foundation for future research to produce human-scale recellularized kidney grafts for transplantation.

20.
Liver Transpl ; 29(7): 683-697, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37029083

ABSTRACT

HCC recurrence following liver transplantation (LT) is highly morbid and occurs despite strict patient selection criteria. Individualized prediction of post-LT HCC recurrence risk remains an important need. Clinico-radiologic and pathologic data of 4981 patients with HCC undergoing LT from the US Multicenter HCC Transplant Consortium (UMHTC) were analyzed to develop a REcurrent Liver cAncer Prediction ScorE (RELAPSE). Multivariable Fine and Gray competing risk analysis and machine learning algorithms (Random Survival Forest and Classification and Regression Tree models) identified variables to model HCC recurrence. RELAPSE was externally validated in 1160 HCC LT recipients from the European Hepatocellular Cancer Liver Transplant study group. Of 4981 UMHTC patients with HCC undergoing LT, 71.9% were within Milan criteria, 16.1% were initially beyond Milan criteria with 9.4% downstaged before LT, and 12.0% had incidental HCC on explant pathology. Overall and recurrence-free survival at 1, 3, and 5 years was 89.7%, 78.6%, and 69.8% and 86.8%, 74.9%, and 66.7%, respectively, with a 5-year incidence of HCC recurrence of 12.5% (median 16 months) and non-HCC mortality of 20.8%. A multivariable model identified maximum alpha-fetoprotein (HR = 1.35 per-log SD, 95% CI,1.22-1.50, p < 0.001), neutrophil-lymphocyte ratio (HR = 1.16 per-log SD, 95% CI,1.04-1.28, p < 0.006), pathologic maximum tumor diameter (HR = 1.53 per-log SD, 95% CI, 1.35-1.73, p < 0.001), microvascular (HR = 2.37, 95%-CI, 1.87-2.99, p < 0.001) and macrovascular (HR = 3.38, 95% CI, 2.41-4.75, p < 0.001) invasion, and tumor differentiation (moderate HR = 1.75, 95% CI, 1.29-2.37, p < 0.001; poor HR = 2.62, 95% CI, 1.54-3.32, p < 0.001) as independent variables predicting post-LT HCC recurrence (C-statistic = 0.78). Machine learning algorithms incorporating additional covariates improved prediction of recurrence (Random Survival Forest C-statistic = 0.81). Despite significant differences in European Hepatocellular Cancer Liver Transplant recipient radiologic, treatment, and pathologic characteristics, external validation of RELAPSE demonstrated consistent 2- and 5-year recurrence risk discrimination (AUCs 0.77 and 0.75, respectively). We developed and externally validated a RELAPSE score that accurately discriminates post-LT HCC recurrence risk and may allow for individualized post-LT surveillance, immunosuppression modification, and selection of high-risk patients for adjuvant therapies.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Liver Transplantation , Humans , Liver Transplantation/adverse effects , Risk Factors , Neoplasm Recurrence, Local/pathology , Retrospective Studies , Recurrence
SELECTION OF CITATIONS
SEARCH DETAIL
...