Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Anim Reprod Sci ; 108(1-2): 157-70, 2008 Oct.
Article in English | MEDLINE | ID: mdl-17884311

ABSTRACT

Increasing infertility, due to pathological changes on sperm, has become a serious issue. Eco-toxicological effect of rising concentration of fluorides can be enhanced in the presence of aluminium ions by forming fluorometallic complexes, analogues of phosphate groups that interfere with the activity of G-proteins and P-type ATPases, which are part of several signalling pathways during sperm maturation. In order for sperm to gain fertilizing ability, they must undergo in the female reproductive tract, capacitation that includes tyrosine phosphorylation and consequent actin polymerization. The present paper reports the findings of 3-month oral toxicity in mice of fluorides at the concentrations 0, 1, 10, and 100ppm and their synergic action with aluminium at dose of 10ppm. There were no mortalities, clinical signs of discomfort or body weight loss during the experiment. The analysis revealed, for the concentrations of 10 and 100ppm, abnormalities of spermatogenesis and ability of epididymal spermatozoa to capacitate in vitro, as the result of decreased sperm head tyrosine phosphorylation and actin polymerization. The enhancing overload caused by fluorides represents a potential factor, having an impact on function of sperm, hence contributing to a growing infertility in the human population.


Subject(s)
Environmental Pollutants/toxicity , Fluorides/toxicity , Sperm Capacitation/drug effects , Spermatozoa/drug effects , Aluminum/toxicity , Animals , Dose-Response Relationship, Drug , Male , Mice , Mice, Inbred BALB C , Organ Size/drug effects , Testis/drug effects , Testis/pathology
2.
Mol Ecol ; 13(6): 1469-80, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15140091

ABSTRACT

The moor frog Rana arvalis is a lowland species with a broad Eurasiatic distribution, from arctic tundra through forest to the steppe zone. Its present-day range suggests that glacial refugia of this frog were located outside southern European peninsulas. We studied the species-wide phylogeographical pattern using sequence variation in a 682 base pairs fragment of mtDNA cytochrome b gene; 223 individuals from 73 localities were analysed. Two main clades, A and B, differing by c. 3.6% sequence divergence were detected. The A clade is further subdivided into two subclades, AI and AII differing by 1.0%. All three lineages are present in the Carpathian Basin (CB), whereas the rest of the species range, including huge expanses of Eurasian lowlands, are inhabited solely by the AI lineage. We infer that AII and B lineages survived several glacial cycles in the CB but did not expand, at least in the present interglacial, to the north. The geographical distribution and genealogical relationships between haplotypes from the AI lineage indicate that this group had two glacial refugia, one located in the eastern part of the CB and the other probably in southern Russia. Populations from both refugia contributed to the colonization of the western part of the range, whereas the eastern part was colonized from the eastern refugium only. The effective population size as evidenced by theta(ML) is an order of magnitude higher in the AI lineage than in the AII and B lineages. Demographic expansion was detected in all three lineages.


Subject(s)
Environment , Evolution, Molecular , Genetic Variation , Phylogeny , Ranidae/genetics , Animals , Base Sequence , Cluster Analysis , DNA Primers , DNA, Mitochondrial/genetics , Europe , Geography , Haplotypes/genetics , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Population Dynamics , Ranidae/physiology , Sequence Analysis, DNA , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL