Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 290(1990): 20222158, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36598015

ABSTRACT

Avoiding costly fights can help conserve energy needed to survive rapid environmental change. Competitor recognition processes help resolve contests without escalating to attack, yet we have limited understanding of how they are affected by resource depletion and potential effects on species coexistence. Using a mass coral mortality event as a natural experiment and 3770 field observations of butterflyfish encounters, we test how rapid resource depletion could disrupt recognition processes in butterflyfishes. Following resource loss, heterospecifics approached each other more closely before initiating aggression, fewer contests were resolved by signalling, and the energy invested in attacks was greater. By contrast, behaviour towards conspecifics did not change. As predicted by theory, conspecifics approached one another more closely and were more consistent in attack intensity yet, contrary to expectations, resolution of contests via signalling was more common among heterospecifics. Phylogenetic relatedness or body size did not predict these outcomes. Our results suggest that competitor recognition processes for heterospecifics became less accurate after mass coral mortality, which we hypothesize is due to altered resource overlaps following dietary shifts. Our work implies that competitor recognition is common among heterospecifics, and disruption of this system could lead to suboptimal decision-making, exacerbating sublethal impacts of food scarcity.


Subject(s)
Anthozoa , Perciformes , Animals , Coral Reefs , Phylogeny , Aggression
2.
Environ Entomol ; 40(6): 1397-404, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22217754

ABSTRACT

Urbanization can alter the organization of ant communities and affect populations of urban pest ants. In this study, we sampled ant communities in urban and suburban yards to understand the habitat factors that shape these communities and influence the abundance of a common pest species, Tapinoma sessile (Say). We used pitfall traps to sample ant communities and a combination of pitfall traps and baiting to collect T. sessile at 24 sites in Knoxville, TN. In total, we collected 46 ant species. Ant species richness ranged from seven to 24 species per yard. Ant species richness tended to be lowest near houses, whereas T. sessile abundance was highest near houses. The best predictors of ant species richness in yards were canopy cover and presence of leaf litter: ant species richness peaked at mid-levels of canopy cover and was negatively correlated with the presence of leaf litter. Tapinoma sessile abundance increased with presence of logs, boards, or landscaping timbers and leaf litter in yards. Our results indicate that ant communities and the abundance of particular pest species in these urban and suburban landscapes are shaped by many of the same factors that structure ant communities in less anthropogenically disturbed environments.


Subject(s)
Ants/physiology , Biota , Animals , Ants/classification , Cities , Ecosystem , Population Density , Regression Analysis , Tennessee
3.
Mol Ecol ; 19(6): 1079-81, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20456224

ABSTRACT

What allows some species to successfully colonize a novel environment while others fail? Numerous studies in invasion biology have sought to answer this question, but those studies have tended to focus on traits of species or individuals (e.g. body size, seed size, seed number), and these traits have largely been found to be weak predictors of invasion success. However, characteristics of colonizing populations (e.g. genetic diversity, density, age structure) might also be important for successful establishment, as the authors of a study published in this issue of Molecular Ecology show (Crawford & Whitney 2010). By experimentally manipulating the density and genetic diversity of colonizing populations of Arabidopsis thaliana, the authors found that genetic diversity, but not population density, increased colonization success. Importantly, the effects of genetic diversity on colonization success were both additive and non-additive, suggesting that traits associated with particular genotypes and complimentarity among genotypes contribute to colonization success. This research highlights the importance of considering within-species variation and characteristics of entire populations in predicting colonization success.


Subject(s)
Arabidopsis/genetics , Genetic Variation , Genetics, Population , Arabidopsis/growth & development , Genotype , Population Density , Population Dynamics
4.
Genome ; 31(2): 909-19, 1989.
Article in English | MEDLINE | ID: mdl-2561112

ABSTRACT

Retrotransposons are a widely distributed group of eukaryotic mobile genetic elements that transpose through an RNA intermediate. The element is transcribed into RNA, and this RNA is reverse transcribed into a DNA copy capable of insertion into many different chromosomal locations. Maturation of proteins and reverse transcription take place within noninfectious intracellular viruslike particles. We have studied the element Ty, which is found dispersed in the genome of the yeast Saccharomyces cerevisiae. The frequency of Ty element transposition is normally quite low but can be greatly increased by expressing an element from a strong promoter. We have used the ability to control the level of Ty transposition to investigate the functions of Ty proteins, the regulation of Ty transposition, and the exploitation of Ty elements as insertional mutagens in yeast. The information gained from these experiments should be applicable to the study of retrotransposons found in multicellular organisms.


Subject(s)
DNA Transposable Elements , Genes, Fungal , Saccharomyces cerevisiae/genetics , Cloning, Molecular , DNA, Fungal/genetics , Gene Expression Regulation, Fungal , Plasmids , RNA, Fungal/genetics , Recombination, Genetic , Transcription, Genetic
5.
Genetics ; 120(1): 95-108, 1988 Sep.
Article in English | MEDLINE | ID: mdl-2851484

ABSTRACT

We have used the ability to induce high levels of Ty transposition to develop a method for transposon mutagenesis in Saccharomyces cerevisiae. To facilitate genetic and molecular analysis, we have constructed GAL1-promoted TyH3 or Ty917 elements that contain unique cloning sites, and marked these elements with selectable genes. These genes include the yeast HIS3 gene, and the plasmid PiAN7 containing the Tn903 NEO gene. The marked Ty elements retain their ability to transpose, to mutate the LYS2, LYS5, or STE2 genes, and to activate the promoterless his3 delta 4 target gene. Ty elements containing selectable genes are also useful in strain construction, in chromosomal mapping, and in gene cloning strategies.


Subject(s)
Cloning, Molecular , DNA Transposable Elements , Mutation , Saccharomyces cerevisiae/genetics , Crosses, Genetic , Genes, Fungal , Genotype , Nucleic Acid Hybridization , Plasmids
6.
Mol Cell Biol ; 8(9): 3571-81, 1988 Sep.
Article in English | MEDLINE | ID: mdl-2851719

ABSTRACT

Transposition of Ty elements in the yeast Saccharomyces cerevisiae occurs through an RNA intermediate. Although Ty RNA accounts for 5 to 10% of the total polyadenylated RNA in a haploid cell, the transposition frequency is only 10(-7) to 10(-8) per gene. To determine whether Ty elements native to the yeast genome are transpositionally competent, two elements were fused to the GAL1 promoter and tested for their ability to transpose. These native elements, Ty1-588 and Ty2-117, transposed at high levels when the GAL1 promoter was induced. Three Ty's identified as spontaneous transpositions in specific target genes were also tested. Of these three, Ty2-917 and the previously characterized element Ty1-H3 were shown to be transpositionally competent. The third element, Ty1-H1, was transposition defective. In addition, we marked the chromosomal copy of Ty1-588 with the NEO gene and demonstrated that Ty1-588NEO was actively transcribed in yeast cells. Ty1-588NEO transcription was regulated by the SPT3 and MAT loci in the same manner as that observed for Ty's collectively. These results indicate that the yeast genome contains functional Ty elements. The presence of a transpositionally competent, actively transcribed element suggests that regulation of Ty transposition occurs at a posttranscriptional level.


Subject(s)
DNA Transposable Elements , Saccharomyces cerevisiae/genetics , Transcription, Genetic , Gene Expression Regulation , Genes, Fungal , Genotype , Plasmids , Promoter Regions, Genetic , RNA, Fungal/genetics , Species Specificity
7.
Mol Cell Biol ; 8(4): 1421-31, 1988 Apr.
Article in English | MEDLINE | ID: mdl-2454391

ABSTRACT

We used several mutations generated in vitro to further characterize the functions of the products encoded by the TyB gene of the transpositionally active retrotransposon TyH3 from Saccharomyces cerevisiae. Mutations close to a core protein domain of TyB, which is homologous to retroviral proteases, have striking effects on Ty protein processing, the physiology of Ty viruslike particles, and transposition. The Ty protease is required for processing of both TyA and TyB proteins. Mutations in the protease resulted in the synthesis of morphologically and functionally aberrant Ty viruslike particles. The mutant particles displayed reverse transcriptase activity, but did not synthesize Ty DNA in vitro. Ty RNA was present in the mutant particles, but at very low levels. Transposition of a genetically tagged element ceased when the protease domain was mutated, demonstrating that Ty protease is essential for transposition. One of these mutations also defined a segment of TyB encoding an active reverse transcriptase. These results indicate that the Ty protease, like its retroviral counterpart, plays an important role in particle assembly, replication, and transposition of these elements.


Subject(s)
DNA Transposable Elements , Endopeptidases/genetics , Genes, Fungal , Genes , Mutation , Saccharomyces cerevisiae/genetics , Endopeptidases/metabolism , Genotype , Microscopy, Electron , Plasmids , RNA-Directed DNA Polymerase/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...