Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 90(3): e0049121, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35130455

ABSTRACT

Neutrophils are capable of extruding neutrophil extracellular traps (NETs), a network of granule proteins and chromatin material, upon activation. NETs provide defense against extracellular microbes, but histones in NETs can also induce cytotoxicity and activate inflammatory responses. The relevance of NETs to bacterial pneumonias is beginning to be defined. In the present study, we found that the extracellular concentration of citrullinated histone H3, a component of NETs, was elevated in bronchoalveolar lavage fluid recovered from mice with diverse bacterial pneumonias and correlated with neutrophil infiltration and cell death in the lungs as well as levels of H4. Because the histone H4 component of NETs is sufficient to stimulate inflammation, we tested its effects in the air spaces of the lungs. Recombinant histone H4 in the noninflamed lung produced only modest effects, but in the setting of neutrophilic inflammation, H4 substantially increased pulmonary neutrophils, NETs, necrosis, and edema. However, blockade of histone H4 with a monoclonal antibody during pneumonia did not significantly alter measures of lung damage. Taken together, these results implicate NETs and extracellular histone H4 in exacerbating the lung injury resulting from bacterial pneumonia.


Subject(s)
Extracellular Traps , Pneumonia, Bacterial , Animals , Extracellular Traps/metabolism , Histones/metabolism , Inflammation/metabolism , Mice , Neutrophils , Pneumonia, Bacterial/metabolism
2.
Exp Clin Transplant ; 17(1): 84-92, 2019 02.
Article in English | MEDLINE | ID: mdl-29697356

ABSTRACT

OBJECTIVES: Chronic aspiration of gastric fluid contents can decrease long-term survival of pulmonary transplants due to development of obliterative bronchiolitis. However, little is known about the early immune response and the cascade of events involved in the development of obliterative bronchiolitis. MATERIALS AND METHODS: We utilized a rat orthotopic pulmonary transplant model and a single aspiration of either gastric fluid or normal saline to investigate the histologic, cellular, and cytokine changes associated with an acute gastric fluid aspiration event compared with normal saline at 2 and 10 days after aspiration. RESULTS: Our observations included a decrease in pulmonary compliance and increased airway inflammation and acute rejection of the transplanted lung, as well as increases in macrophages, granulocytes, and proinflammatory cytokines such as interleukin 1ß, transforming growth factor ß1 and ß2, and tumor necrosis factor α in bronchoalveolar lavage fluid from the transplanted lung of gastric fluid-aspirated rats compared with normal saline-aspirated rats. CONCLUSIONS: The acute inflammatory response observed in the present study is consistent with changes found in chronic models of aspiration-associated injury and suggests a potentially important role for mast cells in the development of obliterative bronchiolitis.


Subject(s)
Bronchiolitis Obliterans/immunology , Graft Rejection/immunology , Lung Transplantation/adverse effects , Lung/immunology , Lung/surgery , Respiratory Aspiration of Gastric Contents/immunology , Acute Disease , Animals , Bronchiolitis Obliterans/metabolism , Bronchiolitis Obliterans/pathology , Bronchoalveolar Lavage Fluid/immunology , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Graft Rejection/metabolism , Graft Rejection/pathology , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Lung/metabolism , Lung/pathology , Lung Compliance , Male , Mast Cells/immunology , Mast Cells/metabolism , Rats, Inbred F344 , Rats, Inbred WKY , Respiratory Aspiration of Gastric Contents/metabolism , Time Factors
3.
Immunol Cell Biol ; 96(3): 273-283, 2018 03.
Article in English | MEDLINE | ID: mdl-29363170

ABSTRACT

Interleukin (IL)-15 overexpression in eosinophilic gastrointestinal disorders is reported, but IL-15's role in promoting eosinophilic gastroenteritis is largely unknown. Therefore, we generated enterocyte-overexpressed IL-15 transgenic mice using Fabpi promoter. The Fabpi-IL-15 (iIL-15) transgenic mice showed induced IL-15 levels in the jejunum with a marked increase in jejunum eosinophils. However, no induction of eosinophilia in the blood or any other gastrointestinal segment was observed. Eosinophilia in the jejunum villus was substantially higher in iIL-15 mice compared to wild-type mice. In addition, goblet cell hyperplasia was also observed in the jejunum of iIL-15 mice. Furthermore, a significant correlation between induced IL-15 transcript and the IL-18 transcripts was observed. Therefore, to further understand the role of IL-18 in IL-15 mice associated gastrointestinal disorders, we generated iIL-15/IL-18Rα-/- mice. Using these mice, we found that IL-18 has an important role in promoting IL-15-induced eosinophilia. As intestinal IL-15 overexpression is reported in food intolerance, we examined OVA intolerance in iIL-15 mice. The OVA-sensitized and challenged iIL-15 mice experienced weight loss, diarrhea and eosinophilia in the jejunum. Taken together, our findings demonstrate that intestinal IL-15 overexpression induces IL-18-dependent eosinophilia and immunoglobulins in the intestine that promotes food allergic responses.


Subject(s)
Eosinophilia/pathology , Goblet Cells/pathology , Interleukin-15/metabolism , Intestines/pathology , Allergens/immunology , Animals , Colon/pathology , Cytokines/metabolism , Eosinophilia/metabolism , Esophagus/pathology , Food Hypersensitivity/immunology , Goblet Cells/metabolism , Hyperplasia , Immunoglobulins/metabolism , Interleukin-18/metabolism , Mice, Inbred BALB C , Mice, Transgenic , Organ Specificity , Ovalbumin/immunology , Promoter Regions, Genetic/genetics , Rats , Th2 Cells/metabolism
4.
World J Gastrointest Pharmacol Ther ; 8(1): 10-25, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-28217371

ABSTRACT

Pancreatitis is inflammation of pancreas and caused by a number of factors including pancreatic duct obstruction, alcoholism, and mutation in the cationic trypsinogen gene. Pancreatitis is represented as acute pancreatitis with acute inflammatory responses and; chronic pancreatitis characterized by marked stroma formation with a high number of infiltrating granulocytes (such as neutrophils, eosinophils), monocytes, macrophages and pancreatic stellate cells (PSCs). These inflammatory cells are known to play a central role in initiating and promoting inflammation including pancreatic fibrosis, i.e., a major risk factor for pancreatic cancer. A number of inflammatory cytokines are known to involve in promoting pancreatic pathogenesis that lead pancreatic fibrosis. Pancreatic fibrosis is a dynamic phenomenon that requires an intricate network of several autocrine and paracrine signaling pathways. In this review, we have provided the details of various cytokines and molecular mechanistic pathways (i.e., Transforming growth factor-ß/SMAD, mitogen-activated protein kinases, Rho kinase, Janus kinase/signal transducers and activators, and phosphatidylinositol 3 kinase) that have a critical role in the activation of PSCs to promote chronic pancreatitis and trigger the phenomenon of pancreatic fibrogenesis. In this review of literature, we discuss the involvement of several pro-inflammatory and anti-inflammatory cytokines, such as in interleukin (IL)-1, IL-1ß, IL-6, IL-8 IL-10, IL-18, IL-33 and tumor necrosis factor-α, in the pathogenesis of disease. Our review also highlights the significance of several experimental animal models that have an important role in dissecting the mechanistic pathways operating in the development of chronic pancreatitis, including pancreatic fibrosis. Additionally, we provided several intermediary molecules that are involved in major signaling pathways that might provide target molecules for future therapeutic treatment strategies for pancreatic pathogenesis.

5.
MOJ Immunol ; 5(2)2017.
Article in English | MEDLINE | ID: mdl-29399623

ABSTRACT

Pancreatitis is a condition characterized by parenchymal inflammation of the pancreas, which is often associated with lung injury due to low level of oxygen and the condition is termed as acute pancreatitis-associated lung injury (APALI). Clinical reports indicated that ~ 20% to 50% of patients from low oxygen levels in blood with acute respiratory distress syndrome (ARDS). ARDS is a severe form of acute lung injury (ALI), a pulmonary disease with impaired airflow making patients difficult to breathe. ALI is frequently observed in patients with severe acute pancreatitis. Approximately one third of severe pancreatitis patients develop acute lung injury and acute respiratory distress syndrome that account for 60% of all deaths within the first week. The major causes of ALI and ARDS are sepsis, trauma, aspiration, multiple blood transfusion, and most importantly acute pancreatitis. The molecular mechanisms of ALI and ARDS are still not well explored, but available reports indicate the involvement of several pro-inflammatory mediators including cytokines (TNF-α, IL-1ß, IL-6) and chemokines [like interleukin-8 (IL-8) and macrophage inhibitory factor (MIF)], as well as macrophage polarization regulating the migration and pulmonary infiltration of neutrophils into the pulmonary interstitial tissue, causing injury to the pulmonary parenchyma. Acute lung injury and acute respiratory distress syndrome in acute pancreatitis remains an unsolved issue and needs more research and resources to develop effective treatments and therapies. However, recent efforts have tested several molecules in an experimental model and showed promising results as a treatment option. The current review summarized the mechanism that is operational in pancreatitis-associated acute respiratory failure and respiratory distress syndrome in patients and current treatment options.

6.
Cytokine Growth Factor Rev ; 32: 31-39, 2016 12.
Article in English | MEDLINE | ID: mdl-27496752

ABSTRACT

Interleukin (IL)-18 is an IL-1 family cytokine expressed by macrophages, dendritic cells, epithelial cells, and keratinocytes and is implicated in various aspects of both the innate and adaptive immune systems. IL-18 signals similar to IL-1ß intracellularly to activate gene transcription. Since its discovery, IL-18 has been demonstrated to play a key role in pathogen defense from helminths and some bacteria. Recently however, evidence has accumulated that IL-18 expression is increased in many presentations of allergic disease. A pathologic role for IL-18 includes stimulating mast cell and basophil degranulation, recruiting granulocytes to sites of inflammation, increasing cytotoxic activity of natural killer (NK) and NK-T cells, inducing Immunoglobulin (Ig)E production and isotype switching, and affecting a broad range of T cells to promote a type II helper T cell (Th2) response. Evidence and importance of these effects are presented, including novel results from our lab implicating IL-18 in the direct expansion of mast cells, basophils, and other myeloid-lineage cells from bone-marrow precursors. The development of urticaria, asthma, dermatitis, rhinitis, and eosinophilic disorders all have demonstrated correlations to increased IL-18 levels either in the tissue or systemically. IL-18 represents a novel site of immune regulation in not only allergic conditions, but also autoimmune diseases and other instances of aberrant immune functioning. Diagrammatic summarized abstract for readers convinance is presented in Fig. 1.


Subject(s)
Hypersensitivity/immunology , Interleukin-18/immunology , Animals , Humans
7.
Exp Lung Res ; 42(1): 37-43, 2016.
Article in English | MEDLINE | ID: mdl-26873328

ABSTRACT

PURPOSE: In the clinical setting, there is no reliable tool for diagnosing gastric aspiration. A potential way of diagnosing gastric fluid aspiration entails bronchoalveolar lavage (BAL) with subsequent examination of the BAL fluid for gastric fluid components that are exogenous to the lungs. The objective of this study was to determine the longevity of the gastric fluid components bile and trypsin in the lung, in order to provide an estimate of the time frame in which assessment of these components in the BAL might effectively be used as a measure of aspiration. MATERIALS AND METHODS: Human gastric fluid (0.5 mg/kg) was infused in the right lung of intubated male Fischer 344 rats (n = 30). Animals were sacrificed at specified times following the experimentally induced aspiration, and bronchoalveolar lavage fluid (BALF) was collected. Bile concentrations were analyzed by an enzyme-linked chromatogenic method, and the concentration of trypsin was quantified using an ELISA. Data were analyzed using non-linear regression and a one-phase decay equation. RESULTS: In this experimental model, the half-life of bile was 9.3 hours (r(2) = 0.81), and the half-life of trypsin was 9.0 hours (r(2) = 0.68). CONCLUSIONS: The half-lives of bile and trypsin in the rodent aspiration model suggest that the ability to detect aspiration may be limited to a few days post-aspiration. If studies using rats are any indication, it may be most effective to collect BAL samples within the first 24 hours of suspected aspiration events in order to detect aspiration.


Subject(s)
Bile/metabolism , Body Fluids/metabolism , Trypsin/metabolism , Animals , Bronchoalveolar Lavage/methods , Bronchoalveolar Lavage Fluid , Humans , Lung , Male , Paracentesis/methods , Rats , Rats, Inbred F344
8.
Physiol Rep ; 3(1)2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25626870

ABSTRACT

The standard of care for chronic gastro-esophageal reflux disease (GERD), which affects up to 40% of the population, is the use of drugs such as proton pump inhibitors (PPIs) that block the production of stomach acid. Despite widespread use, the effects of PPIs on gastric fluid remain poorly characterized. In this study, gastric fluid was collected from patients undergoing cardiac surgery who were not (n = 40) or were (n = 25) actively taking PPIs. Various enzymatic and immunoassays as well as mass spectrometry were utilized to analyze the concentrations of bile, gastricsin, trypsin, and pepsin in the gastric fluid. Proteomic analyses by mass spectrometry suggested that degradation of trypsin at low pH might account, at least in part, for the observation that patients taking PPIs have a greater likelihood of having high concentrations of trypsin in their gastric fluid. In general, the concentrations of all analytes evaluated varied over several orders of magnitude, covering a minimum of a 2000-fold range (gastricsin) and a maximum of a 1 × 10(6) -fold range (trypsin). Furthermore, the concentrations of various analytes were poorly correlated with one another in the samples. For example, trypsin and bile concentrations showed a significant (P < 0.0001) but not strong correlation (r = 0.54). Finally, direct assessment of bacterial concentrations by flow cytometry revealed that PPIs did not cause a profound increase in microbial load in the gastric fluid. These results further delineate the profound effects that PPI usage has on the physiology of the stomach.

9.
World J Gastroenterol ; 19(34): 5607-14, 2013 Sep 14.
Article in English | MEDLINE | ID: mdl-24039352

ABSTRACT

Advances in understanding the interaction between the human immune system and the microbiome have led to an improved understanding of the function of the vermiform appendix as a safe-house for beneficial bacteria in the colon. These advances have been made despite long standing clinical observations that the appendectomy is a safe and effective procedure. However, more recent clinical data show that an appendectomy puts patients at increased risk for recurrent Clostridium difficile (C. difficile)-associated colitis, and probably other diseases associated with an altered microbiome. At the same time, appendectomy does not apparently put patients at risk for an initial onset of C. difficile-associated colitis. These clinical observations point toward the idea that the vermiform appendix might not effectively protect the microbiome in the face of broad spectrum antibiotics, the use of which precedes the initial onset of C. difficile-associated colitis. Further, these observations point to the idea that historically important threats to the microbiome such as infectious gastrointestinal pathogens have been supplanted by other threats, particularly the use of broad spectrum antibiotics.


Subject(s)
Anti-Bacterial Agents/adverse effects , Appendectomy/adverse effects , Appendix/immunology , Clostridioides difficile , Enterocolitis, Pseudomembranous/etiology , Appendix/microbiology , Humans , Microbiota
SELECTION OF CITATIONS
SEARCH DETAIL
...