Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 13: 958730, 2022.
Article in English | MEDLINE | ID: mdl-35989940

ABSTRACT

Objective: This randomized single-blind controlled trial tested the hypothesis that a prototype digital therapeutic developed to provide goal-based counseling with personalized passive and active game-based sound therapy would provide superior tinnitus outcomes, and similar usability, to a popular passive sound therapy app over a 12 week trial period. Methods: The digital therapeutic consisted of an app for iPhone or Android smartphone, Bluetooth bone conduction headphones, neck pillow speaker, and a cloud-based clinician dashboard to enable messaging and app personalization. The control app was a popular self-help passive sound therapy app called White Noise Lite (WN). The primary outcome measure was clinically meaningful change in Tinnitus Functional Index (TFI) between baseline and 12 weeks of therapy. Secondary tinnitus measures were the TFI total score and subscales across sessions, rating scales and the Client Oriented Scale of Improvement in Tinnitus (COSIT). Usability of the US and WN interventions were assessed using the System Usability Scale (SUS) and the mHealth App Usability Questionnaire (MAUQ). Ninety-eight participants who were smartphone app users and had chronic moderate-severe tinnitus (>6 months, TFI score > 40) were enrolled and were randomly allocated to one of the intervention groups. Thirty-one participants in the USL group and 30 in the WN group completed 12 weeks of trial. Results: Mean changes in TFI for the USL group at 6 (16.36, SD 17.96) and 12 weeks (17.83 points, SD 19.87) were clinically meaningful (>13 points reduction), the mean change in WN scores were not clinically meaningful (6 weeks 10.77, SD 18.53; 12 weeks 10.12 points, SD 21.36). A statistically higher proportion of USL participants achieved meaningful TFI change at 6 weeks (55%) and 12 weeks (65%) than the WN group at 6 weeks (33%) and 12 weeks (43%). Mean TFI, rating and COSIT scores favored the US group but were not statistically different from WN. Usability measures were similar for both groups. Conclusions: The USL group demonstrated a higher proportion of responders than the WN group. The usability of the USL therapeutic was similar to the established WN app. The digital polytherapeutic demonstrated significant benefit for tinnitus reduction supporting further development.

2.
Front Digit Health ; 3: 724370, 2021.
Article in English | MEDLINE | ID: mdl-34713191

ABSTRACT

Background: Digital processing has enabled the development of several generations of technology for tinnitus therapy. The first digital generation was comprised of digital Hearing Aids (HAs) and personal digital music players implementing already established sound-based therapies, as well as text based information on the internet. In the second generation Smart-phone applications (apps) alone or in conjunction with HAs resulted in more therapy options for users to select from. The 3rd generation of digital tinnitus technologies began with the emergence of many novel, largely neurophysiologically-inspired, treatment theories that drove development of processing; enabled through HAs, apps, the internet and stand-alone devices. We are now of the cusp of a 4th generation that will incorporate physiological sensors, multiple transducers and AI to personalize therapies. Aim: To review technologies that will enable the next generations of digital therapies for tinnitus. Methods: A "state-of-the-art" review was undertaken to answer the question: what digital technology could be applied to tinnitus therapy in the next 10 years? Google Scholar and PubMed were searched for the 10-year period 2011-2021. The search strategy used the following key words: "tinnitus" and ["HA," "personalized therapy," "AI" (and "methods" or "applications"), "Virtual reality," "Games," "Sensors" and "Transducers"], and "Hearables." Snowballing was used to expand the search from the identified papers. The results of the review were cataloged and organized into themes. Results: This paper identified digital technologies and research on the development of smart therapies for tinnitus. AI methods that could have tinnitus applications are identified and discussed. The potential of personalized treatments and the benefits of being able to gather data in ecologically valid settings are outlined. Conclusions: There is a huge scope for the application of digital technology to tinnitus therapy, but the uncertain mechanisms underpinning tinnitus present a challenge and many posited therapeutic approaches may not be successful. Personalized AI modeling based on biometric measures obtained through various sensor types, and assessments of individual psychology and lifestyles should result in the development of smart therapy platforms for tinnitus.

3.
Brain Sci ; 11(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925762

ABSTRACT

The mechanisms underlying sound's effect on tinnitus perception are unclear. Tinnitus activity appears to conflict with perceptual expectations of "real" sound, resulting in it being a salient signal. Attention diverted towards tinnitus during the later stages of object processing potentially disrupts high-order auditory streaming, and its uncertain nature results in negative psychological responses. This study investigated the benefits and neurophysiological basis of passive perceptual training and informational counseling to recategorize phantom perception as a more real auditory object. Specifically, it examined underlying psychoacoustic correlates of tinnitus and the neural activities associated with tinnitus auditory streaming and how malleable these are to change with targeted intervention. Eighteen participants (8 females, 10 males, mean age = 61.6 years) completed the study. The study consisted of 2 parts: (1) An acute exposure over 30 min to a sound that matched the person's tinnitus (Tinnitus Avatar) that was cross-faded to a selected nature sound (Cicadas, Fan, Water Sound/Rain, Birds, Water and Bird). (2) A chronic exposure for 3 months to the same "morphed" sound. A brain-inspired spiking neural network (SNN) architecture was used to model and compare differences between electroencephalography (EEG) patterns recorded prior to morphing sound presentation, during, after (3-month), and post-follow-up. Results showed that the tinnitus avatar generated was a good match to an individual's tinnitus as rated on likeness scales and was not rated as unpleasant. The five environmental sounds selected for this study were also rated as being appropriate matches to individuals' tinnitus and largely pleasant to listen to. There was a significant reduction in the Tinnitus Functional Index score and subscales of intrusiveness of the tinnitus signal and ability to concentrate with the tinnitus trial end compared to baseline. There was a significant decrease in how strong the tinnitus signal was rated as well as ratings of how easy it was to ignore the tinnitus signal on severity rating scales. Qualitative analysis found that the environmental sound interacted with the tinnitus in a positive way, but participants did not experience change in severity, however, characteristics of tinnitus, including pitch and uniformity of sound, were reported to change. The results indicate the feasibility of the computational SNN method and preliminary evidence that the sound exposure may change activation of neural tinnitus networks and greater bilateral hemispheric involvement as the sound morphs over time into natural environmental sound; particularly relating to attention and discriminatory judgments (dorsal attention network, precentral gyrus, ventral anterior network). This is the first study that attempts to recategorize tinnitus using passive auditory training to a sound that morphs from resembling the person's tinnitus to a natural sound. These findings will be used to design future-controlled trials to elucidate whether the approach used differs in effect and mechanism from conventional Broadband Noise (BBN) sound therapy.

4.
Brain Sci ; 11(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466500

ABSTRACT

Auditory Residual Inhibition (ARI) is a temporary suppression of tinnitus that occurs in some people following the presentation of masking sounds. Differences in neural response to ARI stimuli may enable classification of tinnitus and a tailored approach to intervention in the future. In an exploratory study, we investigated the use of a brain-inspired artificial neural network to examine the effects of ARI on electroencephalographic function, as well as the predictive ability of the model. Ten tinnitus patients underwent two auditory stimulation conditions (constant and amplitude modulated broadband noise) at two time points and were then characterised as responders or non-responders, based on whether they experienced ARI or not. Using a spiking neural network model, we evaluated concurrent neural patterns generated across space and time from features of electroencephalographic data, capturing the neural dynamic changes before and after stimulation. Results indicated that the model may be used to predict the effect of auditory stimulation on tinnitus on an individual basis. This approach may aid in the development of predictive models for treatment selection.

5.
Eur J Neurosci ; 48(4): 2084-2097, 2018 08.
Article in English | MEDLINE | ID: mdl-30025183

ABSTRACT

Long-term potentiation is a form of synaptic plasticity thought to play an important role in learning and memory. Recently noninvasive methods have been developed to induce and measure activity similar to long-term potentiation in humans. Sensory tetani (trains of quickly repeating auditory or visual stimuli) alter the electroencephalogram in a manner similar to electrical stimulation that results in long-term potentiation. This review briefly covers the development of long-term potentiation research before focusing on in vivo human studies that produce long-term potentiation-like effects using auditory and visual stimulation. Similarities and differences between traditional (animal and brain tissue) long-term potentiation studies and human sensory tetanization studies will be discussed, as well as implications for perceptual learning. Although evidence for functional consequences of sensory tetanization remains scarce, studies involving clinical populations indicate that sensory induced plasticity paradigms may be developed into diagnostic and research tools in clinical settings. Individual differences in the effects of sensory tetanization are not well-understood and provide an interesting avenue for future research. Differences in effects found between research groups that have emerged as the field has progressed are also yet to be resolved.


Subject(s)
Acoustic Stimulation/methods , Evoked Potentials, Auditory/physiology , Evoked Potentials, Visual/physiology , Long-Term Potentiation/physiology , Photic Stimulation/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...