Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(26): 11615-11624, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38887928

ABSTRACT

Nanoplastics (nP) pose hazards to aquatic animals once they are ingested. Significant knowledge gaps exist regarding the nP translocation across the animal intestine, which is the first barrier between the ingested nP and the animal body. We examined the intestinal barrier crossing behavior of nP in an aquatic animal model (Daphnia magna) and determined the translocation mechanism with the help of model "core-shell" polystyrene nanoplastics (nPS) and confocal surface-enhanced Raman spectroscopy (SERS). The Raman reporter (4-mercaptobenzoic acid)-tagged gold "core" of the model nPS enables sensitive and reliable particle imaging by confocal SERS. This method detected SERS signals of model nPS concentration as low as 4.1 × 109 particles/L (equivalent to 0.27 µg/L PS "shell" concentration). The translocation was observed with the help of multilayer stacked Raman maps of SERS signals of the model nPS. With a higher concentration or longer exposure time of the model nPS, uptake and translocation of the plastic particles increased. In addition, we demonstrated that clathrin-dependent endocytosis and macropinocytosis were two major mechanisms underlying the translocation. This study contributes to a mechanistic understanding of nP translocation by using the pioneering model nPS and an analytical toolkit, which undergird further investigations into nP behavior and health effects in aquatic species.


Subject(s)
Daphnia , Spectrum Analysis, Raman , Animals , Daphnia/metabolism , Intestines , Polystyrenes , Plastics , Daphnia magna
2.
Anal Sci Adv ; 3(3-4): 113-145, 2022 Apr.
Article in English | MEDLINE | ID: mdl-38715640

ABSTRACT

As the human population grows, the anthropogenic impacts from various agricultural and industrial processes produce unwanted contaminants in the environment. The accurate, sensitive and rapid detection of such contaminants is vital for human health and safety. Surface-enhanced Raman spectroscopy (SERS) is a valuable analytical tool with wide applications in environmental contaminant monitoring. The aim of this review is to summarize recent advancements within SERS research as it applies to environmental detection, with a focus on research published or accessible from January 2021 through December 2021 including early-access publications. Our goal is to provide a wide breadth of information that can be used to provide background knowledge of the field, as well as inform and encourage further development of SERS techniques in protecting environmental quality and safety. Specifically, we highlight the characteristics of effective SERS nanosubstrates, and explore methods for the SERS detection of inorganic, organic, and biological contaminants including heavy metals, pharmaceuticals, plastic particles, synthetic dyes, pesticides, viruses, bacteria and mycotoxins. We also discuss the current limitations of SERS technologies in environmental detection and propose several avenues for future investigation. We encourage researchers to fill in the identified gaps so that SERS can be implemented in a real-world environment more effectively and efficiently, ultimately providing reliable and timely data to help and make science-based strategies and policies to protect environmental safety and public health.

SELECTION OF CITATIONS
SEARCH DETAIL
...