Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomech Model Mechanobiol ; 19(5): 1585-1594, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31980973

ABSTRACT

Accurate estimation of mechanical properties of the different atherosclerotic plaque constituents is important in assessing plaque rupture risk. The aim of this study was to develop an experimental set-up to assess material properties of vascular tissue, while applying physiological loading and being able to capture heterogeneity. To do so, a ring-inflation experimental set-up was developed in which a transverse slice of an artery was loaded in the radial direction, while the displacement was estimated from images recorded by a high-speed video camera. The performance of the set-up was evaluated using seven rubber samples and validated with uniaxial tensile tests. For four healthy porcine carotid arteries, material properties were estimated using ultrasound strain imaging in whole-vessel-inflation experiments and compared to the properties estimated with the ring-inflation experiment. A 1D axisymmetric finite element model was used to estimate the material parameters from the measured pressures and diameters, using a neo-Hookean and Holzapfel-Gasser-Ogden material model for the rubber and porcine samples, respectively. Reproducible results were obtained with the ring-inflation experiment for both rubber and porcine samples. Similar mean stiffness values were found in the ring-inflation and tensile tests for the rubber samples as 202 kPa and 206 kPa, respectively. Comparable results were obtained in vessel-inflation experiments using ultrasound and the proposed ring-inflation experiment. This inflation set-up is suitable for the assessment of material properties of healthy vascular tissue in vitro. It could also be used as part of a method for the assessment of heterogeneous material properties, such as in atherosclerotic plaques.


Subject(s)
Blood Vessels/physiology , Animals , Biomechanical Phenomena/physiology , Carotid Arteries/physiology , Friction , Models, Cardiovascular , Phantoms, Imaging , Pressure , Reproducibility of Results , Swine , Tensile Strength
2.
Radiology ; 266(1): 271-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23151823

ABSTRACT

PURPOSE: To compare four known pharmacokinetic models for their ability to describe dynamic contrast material-enhanced magnetic resonance (MR) imaging of carotid atherosclerotic plaques, to determine reproducibility, and to validate the results with histologic findings. MATERIALS AND METHODS: The study was approved by the institutional medical ethics committee. Written informed consent was obtained from all patients. Forty-five patients with 30%-99% carotid stenosis underwent dynamic contrast-enhanced MR imaging. Plaque enhancement was measured at 16 time points at approximately 25-second image intervals by using a gadolinium-based contrast material. Pharmacokinetic parameters (volume transfer constant, K(trans); extracellular extravascular volume fraction, v(e); and blood plasma fraction, v(p)) were determined by fitting a two-compartment model to plaque and blood gadolinium concentration curves. The relative fit errors and parameter uncertainties were determined to find the most suitable model. Sixteen patients underwent imaging twice to determine reproducibility. Carotid endarterectomy specimens from 16 patients who were scheduled for surgery were collected for histologic validation. Parameter uncertainties were compared with the Wilcoxon signed rank test. Reproducibility was assessed by using the coefficient of variation. Correlation with histologic findings was evaluated with the Pearson correlation coefficient. RESULTS: The mean relative fit uncertainty (±standard error) for K(trans) was 10% ± 1 with the Patlak model, which was significantly lower than that with the Tofts (20% ± 1), extended Tofts (33% ± 3), and extended graphical (29% ± 3) models (P < .001). The relative uncertainty for v(p) was 20% ± 2 with the Patlak model and was significantly higher with the extended Tofts (46% ± 9) and extended graphical (35% ± 5) models (P < .001). The reproducibility (coefficient of variation) for the Patlak model was 16% for K(trans) and 26% for v(p). Significant positive correlations were found between K(trans) and the endothelial microvessel content determined on histologic slices (Pearson ρ = 0.72, P = .005). CONCLUSION: The Patlak model is most suited for describing carotid plaque enhancement. Correlation with histologic findings validated K(trans) as an indicator of plaque microvasculature, and the reproducibility of K(trans) was good.


Subject(s)
Carotid Artery Diseases/metabolism , Carotid Artery Diseases/pathology , Gadolinium DTPA/pharmacokinetics , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Angiography/methods , Models, Biological , Aged , Algorithms , Computer Simulation , Contrast Media/pharmacokinetics , Female , Humans , Image Enhancement/methods , Male , Metabolic Clearance Rate , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...