Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 7(1): e13974, 2019 01.
Article in English | MEDLINE | ID: mdl-30632294

ABSTRACT

Mechanical signals within contracting skeletal muscles contribute to the generation of the exercise pressor reflex; an important autonomic and cardiovascular control mechanism. In decerebrate rats, the mechanically activated channel inhibitor GsMTx4 was found to reduce the pressor response during static hindlimb muscle stretch; a maneuver used to investigate specifically the mechanical component of the exercise pressor reflex (i.e., the mechanoreflex). However, the effect was found only during the initial phase of the stretch when muscle length was changing and not during the later phase of stretch when muscle length was relatively constant. We tested the hypothesis that in decerebrate, unanesthetized rats, GsMTx4 would reduce the pressor response throughout the duration of a 30 sec, 1 Hz dynamic hindlimb muscle stretch protocol that produced repetitive changes in muscle length. We found that the injection of 10 µg of GsMTx4 into the arterial supply of a hindlimb reduced the peak pressor response (control: 15 ± 4, GsMTx4: 5 ± 2 mmHg, P < 0.05, n = 8) and the pressor response at multiple time points throughout the duration of the stretch. GsMTx4 had no effect on the pressor response to the hindlimb arterial injection of lactic acid which indicates the lack of local off-target effects. Combined with the recent finding that GsMTx4 reduced the pressor response only initially during static stretch in decerebrate rats, the present findings suggest that GsMTx4-sensitive channels respond primarily to mechanical signals associated with changes in muscle length. The findings add to our currently limited understanding of the channels that contribute to the activation of the mechanoreflex.


Subject(s)
Blood Pressure , Intercellular Signaling Peptides and Proteins/pharmacology , Muscle Contraction , Muscle, Skeletal/drug effects , Reflex , Spider Venoms/pharmacology , Animals , Decerebrate State , Hindlimb/physiology , Male , Muscle, Skeletal/physiology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...