Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 6(2): e17283, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21387013

ABSTRACT

Sulfated polysaccharides from Laminaria saccharina (new name: Saccharina latissima) brown seaweed show promising activity for the treatment of inflammation, thrombosis, and cancer; yet the molecular mechanisms underlying these properties remain poorly understood. The aim of this work was to characterize, using in vitro and in vivo strategies, the anti-inflammatory, anti-coagulant, anti-angiogenic, and anti-tumor activities of two main sulfated polysaccharide fractions obtained from L. saccharina: a) L.s.-1.0 fraction mainly consisting of O-sulfated mannoglucuronofucans and b) L.s.-1.25 fraction mainly composed of sulfated fucans. Both fractions inhibited leukocyte recruitment in a model of inflammation in rats, although L.s.-1.25 appeared to be more active than L.s.-1.0. Also, these fractions inhibited neutrophil adhesion to platelets under flow. Only fraction L.s.-1.25, but not L.s.-1.0, displayed anticoagulant activity as measured by the activated partial thromboplastin time. Investigation of these fractions in angiogenesis settings revealed that only L.s.-1.25 strongly inhibited fetal bovine serum (FBS) induced in vitro tubulogenesis. This effect correlated with a reduction in plasminogen activator inhibitor-1 (PAI-1) levels in L.s.-1.25-treated endothelial cells. Furthermore, only parent sulfated polysaccharides from L. saccharina (L.s.-P) and its fraction L.s.-1.25 were powerful inhibitors of basic fibroblast growth factor (bFGF) induced pathways. Consistently, the L.s.-1.25 fraction as well as L.s.-P successfully interfered with fibroblast binding to human bFGF. The incorporation of L.s.-P or L.s.-1.25, but not L.s.-1.0 into Matrigel plugs containing melanoma cells induced a significant reduction in hemoglobin content as well in the frequency of tumor-associated blood vessels. Moreover, i.p. administrations of L.s.-1.25, as well as L.s.-P, but not L.s.-1.0, resulted in a significant reduction of tumor growth when inoculated into syngeneic mice. Finally, L.s.-1.25 markedly inhibited breast cancer cell adhesion to human platelet-coated surfaces. Thus, sulfated fucans are mainly responsible for the anti-inflammatory, anticoagulant, antiangiogenic, and antitumor activities of sulfated polysaccharides from L. saccharina brown seaweed.


Subject(s)
Biological Products/pharmacology , Laminaria/chemistry , Polysaccharides/physiology , Angiogenesis Inhibitors/metabolism , Angiogenesis Inhibitors/pharmacology , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Anticoagulants/metabolism , Anticoagulants/pharmacology , Biological Products/chemistry , Biological Products/metabolism , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/physiology , Female , Fucose/chemistry , Fucose/physiology , Humans , Inflammation/pathology , Inflammation/prevention & control , Laminaria/metabolism , Mice , Mice, Inbred C57BL , Neovascularization, Physiologic/drug effects , Phaeophyceae/chemistry , Phaeophyceae/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Polysaccharides/pharmacology , Rats , Rats, Wistar , Seaweed/chemistry , Seaweed/metabolism
2.
Carbohydr Res ; 345(14): 2038-47, 2010 Sep 23.
Article in English | MEDLINE | ID: mdl-20701899

ABSTRACT

The polysaccharide composition of a fucoidan preparation isolated from the brown alga Saccharina latissima (formerly Laminaria saccharina) was reinvestigated. The preparation was fractionated by anion-exchange chromatography, and the fractions obtained were analyzed by chemical methods combined with NMR spectroscopy. Several 2D procedures, including HSQC, HMQC-TOCSY, and HMQC-NOESY, were used to obtain reliable structural information from the complex spectra, and the signal assignments were additionally confirmed by comparison with the literature spectra of the related polysaccharides and synthetic oligosaccharides. In accordance with the previous data, the main polysaccharide component was shown to be a fucan sulfate containing a backbone of 3-linked alpha-l-fucopyranose residues sulfated at C-4 and/or at C-2 and branched at C-2 by single sulfated alpha-l-fucopyranose residues. In addition, three other types of sulfated polysaccharide molecules were detected in the total fucoidan preparation: (i) a fucogalactan having a backbone of 6-linked beta-d-galactopyranose residues branched mainly at C-4 and containing both terminal galactose and fucose residues; (ii) a fucoglucuronomannan having a backbone of alternating 4-linked beta-d-glucopyranosyluronic acid and 2-linked alpha-d-mannopyranose residues with alpha-l-fucopyranose residues as single branches at C-3 of alpha-d-Manp; and (iii) a fucoglucuronan having a backbone of 3-linked beta-d-glucopyranosyluronic acid residues with alpha-l-fucopyranose residues as single branches at C-4. Hence, even a single algal species may contain, at least in minor amounts, several sulfated polysaccharides differing in molecular structure. Partial resolution of these polysaccharides has been accomplished, but unambiguous evidence on their presence as separate entities was not obtained.


Subject(s)
Polysaccharides/chemistry , Carbohydrate Sequence , Chromatography, Ion Exchange , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Phaeophyceae/chemistry , Polysaccharides/isolation & purification
3.
Glycobiology ; 17(5): 541-52, 2007 May.
Article in English | MEDLINE | ID: mdl-17296677

ABSTRACT

The anti-inflammatory, antiangiogenic, anticoagulant, and antiadhesive properties of fucoidans obtained from nine species of brown algae were studied in order to examine the influence of fucoidan origin and composition on their biological activities. All fucoidans inhibited leucocyte recruitment in an inflammation model in rats, and neither the content of fucose and sulfate nor other structural features of their polysaccharide backbones significantly affected the efficacy of fucoidans in this model. In vitro evaluation of P-selectin-mediated neutrophil adhesion to platelets under flow conditions revealed that only polysaccharides from Laminaria saccharina, L. digitata, Fucus evanescens, F. serratus, F. distichus, F. spiralis, and Ascophyllum nodosum could serve as P-selectin inhibitors. All fucoidans, except that from Cladosiphon okamuranus carrying substantial levels of 2-O-alpha-D-glucuronopyranosyl branches in the linear (1-->3)-linked poly-alpha-fucopyranoside chain, exhibited anticoagulant activity as measured by activated partial thromboplastin time whereas only fucoidans from L. saccharina, L. digitata, F. serratus, F. distichus, and F. evanescens displayed strong antithrombin activity in a platelet aggregation test. The last fucoidans potently inhibited human umbilical vein endothelial cell (HUVEC) tubulogenesis in vitro and this property correlated with decreased levels of plasminogen-activator inhibitor-1 in HUVEC supernatants, suggesting a possible mechanism of fucoidan-induced inhibition of tubulogenesis. Finally, fucoidans from L. saccharina, L. digitata, F. serratus, F. distichus, and F. vesiculosus strongly blocked MDA-MB-231 breast carcinoma cell adhesion to platelets, an effect which might have critical implications in tumor metastasis. The data presented herein provide a new rationale for the development of potential drugs for thrombosis, inflammation, and tumor progression.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Endothelial Cells/metabolism , Phaeophyceae , Polysaccharides/pharmacology , Seaweed , Umbilical Veins/metabolism , Angiogenesis Inhibitors/isolation & purification , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Blood Platelets/cytology , Blood Platelets/metabolism , Cell Adhesion/drug effects , Cell Line, Tumor , Endothelial Cells/cytology , Humans , Inflammation/drug therapy , Inflammation/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Phaeophyceae/chemistry , Plasminogen Activator Inhibitor 1/metabolism , Polysaccharides/isolation & purification , Seaweed/chemistry , Thrombosis/drug therapy , Thrombosis/metabolism , Umbilical Veins/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...