Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38713194

ABSTRACT

Whole-genome reconstruction of bacterial pathogens has become an important tool for tracking transmission and antimicrobial resistance gene spread, but highly accurate and complete assemblies have largely only historically been achievable using hybrid long- and short-read sequencing. We previously found the Oxford Nanopore Technologies (ONT) R10.4/kit12 flowcell/chemistry produced improved assemblies over the R9.4.1/kit10 combination, however long-read only assemblies contained more errors compared to Illumina-ONT hybrid assemblies. ONT have since released an R10.4.1/kit14 flowcell/chemistry upgrade and recommended the use of Bovine Serum Albumin (BSA) during library preparation, both of which reportedly increase accuracy and yield. They have also released updated basecallers trained using native bacterial DNA containing methylation sites intended to fix systematic basecalling errors, including common adenosine (A) to guanine (G) and cytosine (C) to thymine (T) substitutions. To evaluate these improvements, we successfully sequenced four bacterial reference strains, namely Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus, and nine genetically diverse E. coli bloodstream infection-associated isolates from different phylogroups and sequence types, both with and without BSA. These sequences were de novo assembled and compared against Illumina-corrected reference genomes. In this small evaluation of 13 isolates we found that nanopore long-read-only R10.4.1/kit 14 assemblies with updated basecallers trained using bacterial methylated DNA produce accurate assemblies with ≥40×depth, sufficient to be cost-effective compared with hybrid ONT/Illumina sequencing in our setting.


Subject(s)
Genome, Bacterial , Nanopores , High-Throughput Nucleotide Sequencing/methods , Escherichia coli/genetics , Staphylococcus aureus/genetics , Sequence Analysis, DNA/methods , Pseudomonas aeruginosa/genetics , Nanopore Sequencing/methods , DNA, Bacterial/genetics , Klebsiella pneumoniae/genetics , Whole Genome Sequencing/methods , Bacteria/genetics , Bacteria/classification , Humans
2.
Microb Genom ; 10(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38529900

ABSTRACT

Multi-drug-resistant Neisseria gonorrhoeae infection is a significant public health risk. Rapidly detecting N. gonorrhoeae and antimicrobial-resistant (AMR) determinants by metagenomic sequencing of urine is possible, although high levels of host DNA and overgrowth of contaminating species hamper sequencing and limit N. gonorrhoeae genome coverage. We performed Nanopore sequencing of nucleic acid amplification test-positive urine samples and culture-positive urethral swabs with and without probe-based target enrichment, using a custom SureSelect panel, to investigate whether selective enrichment of N. gonorrhoeae DNA improves detection of both species and AMR determinants. Probes were designed to cover the entire N. gonorrhoeae genome, with tenfold enrichment of probes covering selected AMR determinants. Multiplexing was tested in a subset of samples. The proportion of sequence bases classified as N. gonorrhoeae increased in all samples after enrichment, from a median (IQR) of 0.05 % (0.01-0.1 %) to 76 % (42-82 %), giving a corresponding median improvement in fold genome coverage of 365 times (112-720). Over 20-fold coverage, required for robust AMR determinant detection, was achieved in 13/15(87 %) samples, compared to 2/15(13 %) without enrichment. The four samples multiplexed together also achieved >20-fold genome coverage. Coverage of AMR determinants was sufficient to predict resistance conferred by changes in chromosomal genes, where present, and genome coverage also enabled phylogenetic relationships to be reconstructed. Probe-based target enrichment can improve N. gonorrhoeae genome coverage when sequencing DNA extracts directly from urine or urethral swabs, allowing for detection of AMR determinants. Additionally, multiplexing prior to enrichment provided enough genome coverage for AMR detection and reduces the costs associated with this method.


Subject(s)
Anti-Infective Agents , Gonorrhea , Nanopore Sequencing , Humans , Neisseria gonorrhoeae/genetics , Anti-Bacterial Agents/pharmacology , Phylogeny , Drug Resistance, Bacterial/genetics , Gonorrhea/diagnosis , DNA
3.
PLoS Genet ; 20(3): e1011187, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38457464

ABSTRACT

BACKGROUND: Recent developments in CRISPR/Cas9 genome-editing tools have facilitated the introduction of precise alleles, including genetic intervals spanning several kilobases, directly into the embryo. However, the introduction of donor templates, via homology directed repair, can be erroneous or incomplete and these techniques often produce mosaic founder animals. Thus, newly generated alleles must be verified at the sequence level across the targeted locus. Screening for the presence of the desired mutant allele using traditional sequencing methods can be challenging due to the size of the interval to be sequenced, together with the mosaic nature of founders. METHODOLOGY/PRINCIPAL FINDINGS: In order to help disentangle the genetic complexity of these animals, we tested the application of Oxford Nanopore Technologies long-read sequencing at the targeted locus and found that the achievable depth of sequencing is sufficient to offset the sequencing error rate associated with the technology used to validate targeted regions of interest. We have assembled an analysis workflow that facilitates interrogating the entire length of a targeted segment in a single read, to confirm that the intended mutant sequence is present in both heterozygous animals and mosaic founders. We used this workflow to compare the output of PCR-based and Cas9 capture-based targeted sequencing for validation of edited alleles. CONCLUSION: Targeted long-read sequencing supports in-depth characterisation of all experimental models that aim to produce knock-in or conditional alleles, including those that contain a mix of genome-edited alleles. PCR- or Cas9 capture-based modalities bring different advantages to the analysis.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , CRISPR-Cas Systems/genetics , Alleles , Gene Editing/methods , Recombinational DNA Repair , Polymerase Chain Reaction
5.
ISME Commun ; 3(1): 113, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37857858

ABSTRACT

Deserts represent an extreme challenge for photosynthetic life. Despite their aridity, they are often inhabited by diverse microscopic communities of cyanobacteria. These organisms are commonly found in lithic habitats, where they are partially sheltered from extremes of temperature and UV radiation. However, living under the rock surface imposes additional constraints, such as limited light availability, and enrichment of longer wavelengths than are typically usable for oxygenic photosynthesis. Some cyanobacteria from the genus Chroococcidiopsis can use this light to photosynthesize, in a process known as far-red light photoacclimation, or FaRLiP. This genus has commonly been reported from both hot and cold deserts. However, not all Chroococcidiopsis strains carry FaRLiP genes, thus motivating our study into the interplay between FaRLiP and extreme lithic environments. The abundance of sequence data and strains provided the necessary material for an in-depth phylogenetic study, involving spectroscopy, microscopy, and determination of pigment composition, as well as gene and genome analyses. Pigment analyses revealed the presence of red-shifted chlorophylls d and f in all FaRLiP strains tested. In addition, eight genus-level taxa were defined within the encompassing Chroococcidiopsidales, clarifying the phylogeny of this long-standing polyphyletic order. FaRLiP is near universally present in a generalist genus identified in a wide variety of environments, Chroococcidiopsis sensu stricto, while it is rare or absent in closely related, extremophile taxa, including those preferentially inhabiting deserts. This likely reflects the evolutionary process of gene loss in specialist lineages.

6.
Microb Genom ; 9(1)2023 01.
Article in English | MEDLINE | ID: mdl-36748454

ABSTRACT

Complete, accurate, cost-effective, and high-throughput reconstruction of bacterial genomes for large-scale genomic epidemiological studies is currently only possible with hybrid assembly, combining long- (typically using nanopore sequencing) and short-read (Illumina) datasets. Being able to use nanopore-only data would be a significant advance. Oxford Nanopore Technologies (ONT) have recently released a new flowcell (R10.4) and chemistry (Kit12), which reportedly generate per-read accuracies rivalling those of Illumina data. To evaluate this, we sequenced DNA extracts from four commonly studied bacterial pathogens, namely Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus, using Illumina and ONT's R9.4.1/Kit10, R10.3/Kit12, R10.4/Kit12 flowcells/chemistries. We compared raw read accuracy and assembly accuracy for each modality, considering the impact of different nanopore basecalling models, commonly used assemblers, sequencing depth, and the use of duplex versus simplex reads. 'Super accuracy' (sup) basecalled R10.4 reads - in particular duplex reads - have high per-read accuracies and could be used to robustly reconstruct bacterial genomes without the use of Illumina data. However, the per-run yield of duplex reads generated in our hands with standard sequencing protocols was low (typically <10 %), with substantial implications for cost and throughput if relying on nanopore data only to enable bacterial genome reconstruction. In addition, recovery of small plasmids with the best-performing long-read assembler (Flye) was inconsistent. R10.4/Kit12 combined with sup basecalling holds promise as a singular sequencing technology in the reconstruction of commonly studied bacterial genomes, but hybrid assembly (Illumina+R9.4.1 hac) currently remains the highest throughput, most robust, and cost-effective approach to fully reconstruct these bacterial genomes.


Subject(s)
Nanopores , High-Throughput Nucleotide Sequencing/methods , Genomics/methods , Sequence Analysis, DNA/methods , Genome, Bacterial/genetics
7.
J Clin Microbiol ; 60(4): e0215621, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35354286

ABSTRACT

Diagnosis of orthopedic device-related infection is challenging, and causative pathogens may be difficult to culture. Metagenomic sequencing can diagnose infections without culture, but attempts to detect antimicrobial resistance (AMR) determinants using metagenomic data have been less successful. Human DNA depletion may maximize the amount of microbial DNA sequence data available for analysis. Human DNA depletion by saponin was tested in 115 sonication fluid samples generated following revision arthroplasty surgery, comprising 67 where pathogens were detected by culture and 48 culture-negative samples. Metagenomic sequencing was performed on the Oxford Nanopore Technologies GridION platform. Filtering thresholds for detection of true species versus contamination or taxonomic misclassification were determined. Mobile and chromosomal genetic AMR determinants were identified in Staphylococcus aureus-positive samples. Of 114 samples generating sequence data, species-level positive percent agreement between metagenomic sequencing and culture was 50/65 (77%; 95% confidence interval [CI], 65 to 86%) and negative percent agreement was 103/114 (90%; 95% CI, 83 to 95%). Saponin treatment reduced the proportion of human bases sequenced in comparison to 5-µm filtration from a median (interquartile range [IQR]) of 98.1% (87.0% to 99.9%) to 11.9% (0.4% to 67.0%), improving reference genome coverage at a 10-fold depth from 18.7% (0.30% to 85.7%) to 84.3% (12.9% to 93.8%). Metagenomic sequencing predicted 13/15 (87%) resistant and 74/74 (100%) susceptible phenotypes where sufficient data were available for analysis. Metagenomic nanopore sequencing coupled with human DNA depletion has the potential to detect AMR in addition to species detection in orthopedic device-related infection. Further work is required to develop pathogen-agnostic human DNA depletion methods, improving AMR determinant detection and allowing its application to other infection types.


Subject(s)
Anti-Bacterial Agents , Saponins , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , High-Throughput Nucleotide Sequencing/methods , Humans , Metagenome , Metagenomics/methods
8.
Microbiol Spectr ; 10(2): e0227921, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35323032

ABSTRACT

Previous metagenomic studies in asthma have been limited by inadequate sequencing depth for species-level bacterial identification and by heterogeneity in clinical phenotyping. We hypothesize that chronic bacterial airways infection is a key "treatable trait" whose prevalence, clinical phenotype and reliable biomarkers need definition. In this study, we have applied a method for Oxford Nanopore sequencing for the unbiased metagenomic characterization of severe asthma. We optimized methods to compare performance of Illumina MiSeq, Nanopore sequencing, and RT-qPCR on total sputum DNA extracts against culture/MALDI-TOF for analysis of induced sputum samples from highly phenotyped severe asthma during clinical stability. In participants with severe asthma (n = 23) H. influenzae was commonly cultured (n = 8) and identified as the dominant bacterial species by metagenomic sequencing using an optimized method for Illumina MiSeq and Oxford Nanopore. Alongside superior operational characteristics, Oxford Nanopore achieved near complete genome coverage of H. influenzae and demonstrated a high level of agreement with Illumina MiSeq data. Clinically significant infection was confirmed with validated H. influenzae plasmid-based quantitative PCR assay. H. influenzae positive patients were found to have sputum neutrophilia and lower FeNO. In conclusion, using an optimized method of direct sequencing of induced sputum samples, H. influenzae was identified as a clinically relevant pathogen in severe asthma and was identified reliably using metagenomic sequencing. Application of these protocols in ongoing analysis of large patient cohorts will allow full characterization of this clinical phenotype. IMPORTANCE The human airways were once thought sterile in health. Now metagenomic techniques suggest bacteria may be present, but their role in asthma is not understood. Traditional culture lacks sensitivity and current sequencing techniques are limited by operational problems and limited ability to identify pathogens at species level. We optimized a new sequencing technique-Oxford Nanopore technologies (ONT)-for use on human sputum samples and compared it with existing methods. We found ONT was effective for rapidly analyzing samples and could identify bacteria at the species level. We used this to show Haemophilus influenzae was a dominant bacterium in the airways in people with severe asthma. The presence of Haemophilus was associated with a "neutrophilic" form of asthma - a subgroup for which we currently lack specific treatments. Therefore, this technique could be used to target chronic antibiotic therapy and in research to characterize the full breadth of bacteria in the airways.


Subject(s)
Asthma , Bacterial Infections , Nanopore Sequencing , Bacteria/genetics , Bacterial Infections/diagnosis , High-Throughput Nucleotide Sequencing/methods , Humans , Metagenomics/methods , Respiratory System
9.
Euro Surveill ; 26(27)2021 07.
Article in English | MEDLINE | ID: mdl-34240696

ABSTRACT

BackgroundInfluenza virus presents a considerable challenge to public health by causing seasonal epidemics and occasional pandemics. Nanopore metagenomic sequencing has the potential to be deployed for near-patient testing, providing rapid infection diagnosis, rationalising antimicrobial therapy, and supporting infection-control interventions.AimTo evaluate the applicability of this sequencing approach as a routine laboratory test for influenza in clinical settings.MethodsWe conducted Oxford Nanopore Technologies (Oxford, United Kingdom (UK)) metagenomic sequencing for 180 respiratory samples from a UK hospital during the 2018/19 influenza season, and compared results to routine molecular diagnostic standards (Xpert Xpress Flu/RSV assay; BioFire FilmArray Respiratory Panel 2 assay). We investigated drug resistance, genetic diversity, and nosocomial transmission using influenza sequence data.ResultsCompared to standard testing, Nanopore metagenomic sequencing was 83% (75/90) sensitive and 93% (84/90) specific for detecting influenza A viruses. Of 59 samples with haemagglutinin subtype determined, 40 were H1 and 19 H3. We identified an influenza A(H3N2) genome encoding the oseltamivir resistance S331R mutation in neuraminidase, potentially associated with an emerging distinct intra-subtype reassortant. Whole genome phylogeny refuted suspicions of a transmission cluster in a ward, but identified two other clusters that likely reflected nosocomial transmission, associated with a predominant community-circulating strain. We also detected other potentially pathogenic viruses and bacteria from the metagenome.ConclusionNanopore metagenomic sequencing can detect the emergence of novel variants and drug resistance, providing timely insights into antimicrobial stewardship and vaccine design. Full genome generation can help investigate and manage nosocomial outbreaks.


Subject(s)
Cross Infection , Influenza, Human , Nanopores , Antiviral Agents/therapeutic use , Cross Infection/diagnosis , Cross Infection/drug therapy , Drug Resistance , Drug Resistance, Viral/genetics , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/diagnosis , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Metagenome , Neuraminidase/genetics , Seasons , United Kingdom
10.
J Clin Microbiol ; 59(9): e0291620, 2021 08 18.
Article in English | MEDLINE | ID: mdl-33910965

ABSTRACT

Metagenomic sequencing is frequently claimed to have the potential to revolutionize microbiology through rapid species identification and antimicrobial resistance (AMR) prediction. We assess the progress toward these developments. We perform a systematic review and meta-analysis of all published literature on culture-independent metagenomic sequencing for pathogen-agnostic infectious disease diagnostics up to 12 August 2020. Methodologic bias and applicability were assessed using the tool Quadas-2. (Prospero CRD42020163777). A total of 2,023 clinical samples from 13/21 eligible diagnostic test accuracy studies were included in the meta-analysis. Reference standards were culture, molecular testing, clinical decision, or a composite measure. Sensitivity and specificity in the most widely investigated sample types were 90% (95% confidence interval [CI], 78% to 96%) and 86% (45% to 98%) for blood, 75% (54% to 89%) and 96% (72% to 100%) for cerebrospinal fluid (CSF), and 84% (79% to 88%) and 67% (38% to 87%) for orthopedic samples, respectively. We identified a limited use of controls, especially negative controls which were used in only 62% (13/21) of studies. AMR prediction and comparison to phenotypic results were undertaken in four studies; categorical agreement was 88%(80% to 97%), and very major and major error rates were 24% (8% to 40%) and 5% (0% to 12%), respectively. Better human DNA depletion methods are required; a median 91% (interquartile range [IQR], 82% to 98%; range, 76% to 98%) of sequences was classified as human. The median (IQR; range) time from sample to result was 29 hours (24 to 94; 4 to 144 hours). The reported consumable cost per sample ranged from $130 to $685. There is scope for improving the quality of reporting in clinical metagenomic studies. Although our results are limited by the heterogeneity displayed, our results reflect a promising outlook for clinical metagenomics. Methodological improvements and convergence around protocols and best practices may improve performance in the future.


Subject(s)
Communicable Diseases , Metagenomics , Communicable Diseases/diagnosis , Diagnostic Tests, Routine , Humans , Metagenome , Sensitivity and Specificity
11.
Genome Res ; 30(9): 1354-1363, 2020 09.
Article in English | MEDLINE | ID: mdl-32873606

ABSTRACT

The rise of antimicrobial-resistant Neisseria gonorrhoeae is a significant public health concern. Against this background, rapid culture-independent diagnostics may allow targeted treatment and prevent onward transmission. We have previously shown metagenomic sequencing of urine samples from men with urethral gonorrhea can recover near-complete N. gonorrhoeae genomes. However, disentangling the N. gonorrhoeae genome from metagenomic samples and robustly identifying antimicrobial resistance determinants from error-prone Nanopore sequencing is a substantial bioinformatics challenge. Here, we show an N. gonorrhoeae diagnostic workflow for analysis of metagenomic sequencing data obtained from clinical samples using R9.4.1 Nanopore sequencing. We compared results from simulated and clinical infections with data from known reference strains and Illumina sequencing of isolates cultured from the same patients. We evaluated three Nanopore variant callers and developed a random forest classifier to filter called SNPs. Clair was the most suitable variant caller after SNP filtering. A minimum depth of 20× reads was required to confidently identify resistant determinants over the entire genome. Our findings show that metagenomic Nanopore sequencing can provide reliable diagnostic information in N. gonorrhoeae infection.


Subject(s)
Drug Resistance, Bacterial/genetics , Nanopore Sequencing , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/genetics , Anti-Bacterial Agents/pharmacology , Genome, Bacterial , Gonorrhea/microbiology , Humans , Male , Metagenomics , Polymorphism, Single Nucleotide
12.
J Clin Microbiol ; 58(10)2020 09 22.
Article in English | MEDLINE | ID: mdl-32719032

ABSTRACT

Mycobacterium tuberculosis is the leading cause of death from bacterial infection. Improved rapid diagnosis and antimicrobial resistance determination, such as by whole-genome sequencing, are required. Our aim was to develop a simple, low-cost method of preparing DNA for sequencing direct from M. tuberculosis-positive clinical samples (without culture). Simultaneous sputum liquefaction, bacteria heat inactivation (99°C/30 min), and enrichment for mycobacteria DNA were achieved using an equal volume of thermo-protection buffer (4 M KCl, 0.05 M HEPES buffer, pH 7.5, 0.1% dithiothreitol [DTT]). The buffer emulated intracellular conditions found in hyperthermophiles, thus protecting DNA from rapid thermodegradation, which renders it a poor template for sequencing. Initial validation experiments employed mycobacteria DNA, either extracted or intracellular. Next, mock clinical samples (infection-negative human sputum spiked with 0 to 105Mycobacterium bovis BCG cells/ml) underwent liquefaction in thermo-protection buffer and heat inactivation. DNA was extracted and sequenced. Human DNA degraded faster than mycobacteria DNA, resulting in target enrichment. Four replicate experiments achieved M. tuberculosis detection at 101 BCG cells/ml, with 31 to 59 M. tuberculosis complex reads. Maximal genome coverage (>97% at 5× depth) occurred at 104 BCG cells/ml; >91% coverage (1× depth) occurred at 103 BCG cells/ml. Final validation employed M. tuberculosis-positive clinical samples (n = 20), revealing that initial sample volumes of ≥1 ml typically yielded higher mean depths of M. tuberculosis genome coverage, with an overall range of 0.55 to 81.02. A mean depth of 3 gave >96% 1-fold tuberculosis (TB) genome coverage (in 15/20 clinical samples). A mean depth of 15 achieved >99% 5-fold genome coverage (in 9/20 clinical samples). In summary, direct-from-sample sequencing of M. tuberculosis genomes was facilitated by a low-cost thermo-protection buffer.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium bovis/genetics , Mycobacterium tuberculosis/genetics , Sputum , Tuberculosis/diagnosis , Whole Genome Sequencing
13.
J Immunol ; 204(9): 2455-2463, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32213565

ABSTRACT

Cattle possess the most diverse repertoire of NK cell receptor genes among all mammals studied to date. Killer cell receptor genes encoded within the NK complex and killer cell Ig-like receptor genes encoded within the leukocyte receptor complex have both been expanded and diversified. Our previous studies identified two divergent and polymorphic KLRA alleles within the NK complex in the Holstein-Friesian breed of dairy cattle. By examining a much larger cohort and other ruminant species, we demonstrate the emergence and fixation of two KLRA allele lineages (KLRA*01 and -*02) at a single locus during ruminant speciation. Subsequent recombination events between these allele lineages have increased the frequency of KLRA*02 extracellular domains. KLRA*01 and KLRA*02 transcription levels contrasted in response to cytokine stimulation, whereas homozygous animals consistently transcribed higher levels of KLRA, regardless of the allele lineage. KLRA*02 mRNA levels were also generally higher than KLRA*01 Collectively, these data point toward alternative functional roles governed by KLRA genotype and allele lineage. On a background of high genetic diversity of NK cell receptor genes, this KLRA allele fixation points to fundamental and potentially differential function roles.


Subject(s)
NK Cell Lectin-Like Receptor Subfamily A/genetics , Ruminants/genetics , Transcription, Genetic/genetics , Alleles , Animals , Cattle , Gene Frequency/genetics , Gene Frequency/immunology , Genotype , Killer Cells, Natural/immunology , NK Cell Lectin-Like Receptor Subfamily A/immunology , RNA, Messenger/genetics , RNA, Messenger/immunology , Ruminants/immunology , Transcription, Genetic/immunology
14.
J Infect ; 80(5): 571-577, 2020 05.
Article in English | MEDLINE | ID: mdl-32092386

ABSTRACT

BACKGROUND: Human metapneumovirus (HMPV) infection causes a spectrum of respiratory tract disease, and may be a significant pathogen in the context of immunocompromise. Here, we report direct-from-sample metagenomic sequencing of HMPV using Oxford Nanopore Technology. METHODS: We applied this sequencing approach to 25 respiratory samples that had been submitted to a clinical diagnostic laboratory in a UK teaching hospital. These samples represented 13 patients under the care of a haematology unit over a 20-day period in Spring 2019 (two sampled twice), and ten other patients elsewhere in the hospital between 2017-2019. RESULTS: We generated HMPV reads from 20/25 samples (sensitivity 80% compared to routine diagnostic testing) and retrieved complete HMPV genomes from 15/20 of these. Consensus sequences from Nanopore data were identical to those generated by Illumina, and represented HMPV genomes from two distinct sublineages, A2b and B2. Sequences from ten haematology patients formed a unique genetic group in the A2b sublineage, not previously reported in the UK. Among these, eight HMPV genomes formed a cluster (differing by ≤3 SNPs), likely to reflect nosocomial transmission, while two others were more distantly related and may represent independent introductions to the haematology unit. CONCLUSION: Nanopore metagenomic sequencing can be used to diagnose HMPV infection, although more work is required to optimise sensitivity. Improvements in the use of metagenomic sequencing, particularly for respiratory viruses, could contribute to antimicrobial stewardship. Generation of full genome sequences can be used to support or rule out nosocomial transmission, and contribute to improving infection prevention and control practices.


Subject(s)
Cross Infection , Hematology , Metapneumovirus , Nanopores , Paramyxoviridae Infections , Respiratory Tract Infections , Cross Infection/epidemiology , Humans , Infant , Phylogeny , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , United Kingdom/epidemiology
15.
J Clin Microbiol ; 58(3)2020 02 24.
Article in English | MEDLINE | ID: mdl-31852766

ABSTRACT

Empirical gonorrhea treatment at initial diagnosis reduces onward transmission. However, increasing resistance to multiple antibiotics may necessitate waiting for culture-based diagnostics to select an effective treatment. There is a need for same-day culture-free diagnostics that identify infection and detect antimicrobial resistance. We investigated if Nanopore sequencing can detect sufficient Neisseria gonorrhoeae DNA to reconstruct whole genomes directly from urine samples. We used N. gonorrhoeae-spiked urine samples and samples from gonorrhea infections to determine optimal DNA extraction methods that maximize the amount of N. gonorrhoeae DNA sequenced while minimizing contaminating host DNA. In simulated infections, the Qiagen UCP pathogen mini kit provided the highest ratio of N. gonorrhoeae to human DNA and the most consistent results. Depletion of human DNA with saponin increased N. gonorrhoeae yields in simulated infections but decreased yields in clinical samples. In 10 urine samples from men with symptomatic urethral gonorrhea, ≥92.8% coverage of an N. gonorrhoeae reference genome was achieved in all samples, with ≥93.8% coverage breath at ≥10-fold depth in 7 (70%) samples. In simulated infections, if ≥104 CFU/ml of N. gonorrhoeae was present, sequencing of the large majority of the genome was frequently achieved. N. gonorrhoeae could also be detected from urine in cobas PCR medium tubes and from urethral swabs and in the presence of simulated Chlamydia coinfection. Using Nanopore sequencing of urine samples from men with urethral gonorrhea, sufficient data can be obtained to reconstruct whole genomes in the majority of samples without the need for culture.


Subject(s)
Chlamydia Infections , Gonorrhea , Nanopore Sequencing , Chlamydia trachomatis/genetics , DNA/isolation & purification , Gonorrhea/diagnosis , Humans , Male , Neisseria gonorrhoeae/genetics
16.
Front Immunol ; 10: 2302, 2019.
Article in English | MEDLINE | ID: mdl-31616444

ABSTRACT

The leukocyte receptor complex (LRC) encodes a large number of immunoglobulin (Ig)-like receptors involved in the immune response, particularly in modulating natural killer (NK) cell function. The killer cell Ig-like receptors (KIR), the leukocyte Ig-like receptors (LILR), and a recently described novel Ig-like receptor family are highly variable between species, which is consistent with rapid evolution driven by selection pressure from pathogens. Among the species studied to date, only simians (such as humans) and bovids (such as cattle and goats) have an expanded complement of KIR genes and represent an interesting model to study KIR evolution. Using recently improved genome assemblies and an assembly of bacterial artificial chromosomes, we describe the structure of the LRC, and the KIR region in particular, in goats and compare this to sheep as the assemblies allow. These species diverged from a common ancestor ~10 million years ago and from cattle ~25 million years ago. We identified conserved KIR genes common to both goats and sheep and confirm a partial sheep haplotype shared between the Rambouillet and Texel breeds. Goats and sheep have independently expanded two novel KIR subgroups, and unlike cattle or any other mammal, they do not appear to possess a functional 3DL-lineage KIR gene. Investigation of LRC gene expression using available transcriptomic data for various sheep and goat tissues largely confirmed putative gene annotation and revealed that a relatively conserved caprinae-specific KIR subgroup is expressed in macrophages. The LILR and novel Ig-like receptors were also highly expressed across a diverse range of tissues. This further step toward our understanding of the LRC receptor repertoire will help inform future studies investigating immune response variation in these species.


Subject(s)
Gene Expression/genetics , Gene Expression/immunology , Goats/genetics , Goats/immunology , Leukocytes/immunology , Receptors, KIR/genetics , Receptors, KIR/immunology , Animals , Cattle , Evolution, Molecular , Haplotypes/genetics , Haplotypes/immunology , Immunoglobulins/genetics , Immunoglobulins/immunology , Killer Cells, Natural/immunology , Phylogeny , Sheep
17.
Microb Genom ; 5(9)2019 09.
Article in English | MEDLINE | ID: mdl-31483244

ABSTRACT

Illumina sequencing allows rapid, cheap and accurate whole genome bacterial analyses, but short reads (<300 bp) do not usually enable complete genome assembly. Long-read sequencing greatly assists with resolving complex bacterial genomes, particularly when combined with short-read Illumina data (hybrid assembly). However, it is not clear how different long-read sequencing methods affect hybrid assembly accuracy. Relative automation of the assembly process is also crucial to facilitating high-throughput complete bacterial genome reconstruction, avoiding multiple bespoke filtering and data manipulation steps. In this study, we compared hybrid assemblies for 20 bacterial isolates, including two reference strains, using Illumina sequencing and long reads from either Oxford Nanopore Technologies (ONT) or SMRT Pacific Biosciences (PacBio) sequencing platforms. We chose isolates from the family Enterobacteriaceae, as these frequently have highly plastic, repetitive genetic structures, and complete genome reconstruction for these species is relevant for a precise understanding of the epidemiology of antimicrobial resistance. We de novo assembled genomes using the hybrid assembler Unicycler and compared different read processing strategies, as well as comparing to long-read-only assembly with Flye followed by short-read polishing with Pilon. Hybrid assembly with either PacBio or ONT reads facilitated high-quality genome reconstruction, and was superior to the long-read assembly and polishing approach evaluated with respect to accuracy and completeness. Combining ONT and Illumina reads fully resolved most genomes without additional manual steps, and at a lower consumables cost per isolate in our setting. Automated hybrid assembly is a powerful tool for complete and accurate bacterial genome assembly.


Subject(s)
Enterobacteriaceae/genetics , Genome, Bacterial , High-Throughput Nucleotide Sequencing/methods , DNA, Bacterial/chemistry , DNA, Bacterial/isolation & purification , DNA, Bacterial/metabolism , Enterobacteriaceae/isolation & purification , Gene Library , High-Throughput Nucleotide Sequencing/economics , Sequence Analysis, DNA/economics , Sequence Analysis, DNA/methods
18.
Elife ; 82019 02 22.
Article in English | MEDLINE | ID: mdl-30794157

ABSTRACT

Pyomyositis is a severe bacterial infection of skeletal muscle, commonly affecting children in tropical regions, predominantly caused by Staphylococcus aureus. To understand the contribution of bacterial genomic factors to pyomyositis, we conducted a genome-wide association study of S. aureus cultured from 101 children with pyomyositis and 417 children with asymptomatic nasal carriage attending the Angkor Hospital for Children, Cambodia. We found a strong relationship between bacterial genetic variation and pyomyositis, with estimated heritability 63.8% (95% CI 49.2-78.4%). The presence of the Panton-Valentine leucocidin (PVL) locus increased the odds of pyomyositis 130-fold (p=10-17.9). The signal of association mapped both to the PVL-coding sequence and to the sequence immediately upstream. Together these regions explained over 99.9% of heritability (95% CI 93.5-100%). Our results establish staphylococcal pyomyositis, like tetanus and diphtheria, as critically dependent on a single toxin and demonstrate the potential for association studies to identify specific bacterial genes promoting severe human disease.


Subject(s)
Bacterial Toxins/metabolism , Exotoxins/metabolism , Leukocidins/metabolism , Pyomyositis/physiopathology , Staphylococcal Infections/physiopathology , Staphylococcus aureus/metabolism , Virulence Factors/metabolism , Bacterial Toxins/genetics , Cambodia , Exotoxins/genetics , Genome-Wide Association Study , Humans , Leukocidins/genetics , Staphylococcus aureus/genetics , Virulence Factors/genetics
19.
BMC Genomics ; 19(1): 714, 2018 Sep 27.
Article in English | MEDLINE | ID: mdl-30261842

ABSTRACT

BACKGROUND: Prosthetic joint infections are clinically difficult to diagnose and treat. Previously, we demonstrated metagenomic sequencing on an Illumina MiSeq replicates the findings of current gold standard microbiological diagnostic techniques. Nanopore sequencing offers advantages in speed of detection over MiSeq. Here, we report a real-time analytical pathway for Nanopore sequence data, designed for detecting bacterial composition of prosthetic joint infections but potentially useful for any microbial sequencing, and compare detection by direct-from-clinical-sample metagenomic nanopore sequencing with Illumina sequencing and standard microbiological diagnostic techniques. RESULTS: DNA was extracted from the sonication fluids of seven explanted orthopaedic devices, and additionally from two culture negative controls, and was sequenced on the Oxford Nanopore Technologies MinION platform. A specific analysis pipeline was assembled to overcome the challenges of identifying the true infecting pathogen, given high levels of host contamination and unavoidable background lab and kit contamination. The majority of DNA classified (> 90%) was host contamination and discarded. Using negative control filtering thresholds, the species identified corresponded with both routine microbiological diagnosis and MiSeq results. By analysing sequences in real time, causes of infection were robustly detected within minutes from initiation of sequencing. CONCLUSIONS: We demonstrate a novel, scalable pipeline for real-time analysis of MinION sequence data and use of this pipeline to show initial proof of concept that metagenomic MinION sequencing can provide rapid, accurate diagnosis for prosthetic joint infections. The high proportion of human DNA in prosthetic joint infection extracts prevents full genome analysis from complete coverage, and methods to reduce this could increase genome depth and allow antimicrobial resistance profiling. The nine samples sequenced in this pilot study have shown a proof of concept for sequencing and analysis that will enable us to investigate further sequencing to improve specificity and sensitivity.


Subject(s)
Bacteria/classification , Joint Prosthesis/microbiology , Metagenomics/methods , Sequence Analysis, DNA/methods , Bacteria/genetics , Bacteria/isolation & purification , DNA, Bacterial/analysis , High-Throughput Nucleotide Sequencing/methods , Humans , Nanopores , Pilot Projects , Reproducibility of Results
20.
Euro Surveill ; 23(27)2018 07.
Article in English | MEDLINE | ID: mdl-29991383

ABSTRACT

We describe a gonorrhoea case with combined high-level azithromycin resistance and ceftriaxone resistance. In February 2018, a heterosexual male was diagnosed with gonorrhoea in the United Kingdom following sexual intercourse with a locally resident female in Thailand and failed treatment with ceftriaxone plus doxycycline and subsequently spectinomycin. Resistance arose from two mechanisms combining for the first time in a genetic background similar to a commonly circulating strain. Urgent action is essential to prevent further spread.


Subject(s)
Drug Resistance, Bacterial/drug effects , Gonorrhea/drug therapy , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/isolation & purification , Spectinomycin/therapeutic use , Adult , Anti-Bacterial Agents/therapeutic use , Azithromycin/pharmacology , Ceftriaxone/pharmacology , Doxycycline/pharmacology , England , Gonorrhea/diagnosis , Humans , Male , Microbial Sensitivity Tests , Neisseria gonorrhoeae/genetics , Sequence Analysis , Thailand , Travel , Treatment Failure
SELECTION OF CITATIONS
SEARCH DETAIL
...