Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Probl Cardiol ; 49(8): 102586, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38653440

ABSTRACT

Cardiovascular disease (CVD) remains a significant global health challenge despite advancements in prevention and treatment. Elevated Lipoprotein(a) [Lp(a)] levels have emerged as a crucial risk factor for CVD and aortic stenosis, affecting approximately 20 of the global population. Research over the last decade has established Lp(a) as an independent genetic contributor to CVD and aortic stenosis, beginning with Kare Berg's discovery in 1963. This has led to extensive exploration of its molecular structure and pathogenic roles. Despite the unknown physiological function of Lp(a), studies have shed light on its metabolism, genetics, and involvement in atherosclerosis, inflammation, and thrombosis. Epidemiological evidence highlights the link between high Lp(a) levels and increased cardiovascular morbidity and mortality. Newly emerging therapies, including pelacarsen, zerlasiran, olpasiran, muvalaplin, and lepodisiran, show promise in significantly lowering Lp(a) levels, potentially transforming the management of cardiovascular disease. However, further research is essential to assess these novel therapies' long-term efficacy and safety, heralding a new era in cardiovascular disease prevention and treatment and providing hope for at-risk patients.


Subject(s)
Cardiovascular Diseases , Lipoprotein(a) , Humans , Lipoprotein(a)/metabolism , Lipoprotein(a)/blood , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Biomarkers/blood , Biomarkers/metabolism , Heart Disease Risk Factors , Hypolipidemic Agents/therapeutic use , Risk Factors
2.
Cureus ; 13(12): e20828, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35111479

ABSTRACT

Attention-deficit hyperactivity disorder (ADHD) affects multiple cognitive domains, including impaired attention, hyperactivity, and increased impulsivity. According to the CDC, 9.4% of children between 2 and 17 years old have been diagnosed with ADHD. Neurotransmitters such as noradrenaline and dopamine have been suggested as crucial players in the pathophysiology of ADHD and are often targets of modern medication. Adenosine receptors types A1 and A2a in the brain are inhibited by caffeine: a stimulant known to augment attention by increasing cholinergic and dopaminergic transmission. The cognitive function of attention is also enhanced by the amino acid: L-theanine. The mechanism of action is that it behaves like a glutamate reuptake inhibitor while also acting in the hippocampus as a competitive low-affinity glutamate receptor antagonist. It's also shown to have a neuroprotective effect by its action on the gamma aminobutyric acid (GABA)-A receptors. Our systematic review investigates the literature and clinical trials on the cognitive-enhancing effects of caffeine and L-theanine.

SELECTION OF CITATIONS
SEARCH DETAIL
...