Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 108(5): L052106, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38115400

ABSTRACT

A Bernoulli trial describing the escape behavior of a lamb to a safe haven in pursuit by a lion is studied under restarts. The process ends in two ways: either the lamb makes it to the safe haven (success) or is captured by the lion (failure). We study the first passage properties of this Bernoulli trial and find that only mean first passage time exists. Considering Poisson and sharp resetting, we find that the success probability is a monotonically decreasing function of the restart rate. The mean time, however, exhibits a nonmonotonic dependence on the restart rate taking a minimal value at an optimal restart rate. Furthermore, for sharp restart, the mean time possesses a local and a global minima. As a result, the optimal restart rate exhibits a continuous transition for Poisson resetting while it exhibits a discontinuous transition for sharp resetting as a function of the relative separation of the lion and the lamb. We also find that the distribution of first passage times under sharp resetting exhibits a periodic behavior.

2.
Phys Rev E ; 105(6-1): 064133, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35854558

ABSTRACT

We address the effect of stochastic resetting on diffusion and subdiffusion process. For diffusion we find that mean square displacement relaxes to a constant only when the distribution of reset times possess finite mean and variance. In this case, the leading order contribution to the probability density function (PDF) of a Gaussian propagator under resetting exhibits a cusp independent of the specific details of the reset time distribution. For subdiffusion we derive the PDF in Laplace space for arbitrary resetting protocol. Resetting at constant rate allows evaluation of the PDF in terms of H function. We analyze the steady state and derive the rate function governing the relaxation behavior. For a subdiffusive process the steady state could exist even if the distribution of reset times possesses only finite mean.

3.
Phys Rev E ; 102(2-1): 022128, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32942420

ABSTRACT

We study generalized Cattaneo (telegrapher's) equations involving memory effects introduced by smearing the time derivatives. Consistency conditions where the smearing functions obey restrict freedom in their choice but the proposed scheme goes beyond the approach based on using fractional derivatives. We find conditions under which solutions of the equations considered so far can be recognized as probability distributions, i.e., are normalizable and nonnegative on their domains. Nonnegativity of solutions is demonstrated by methods of positive definite and completely monotonic functions with the Bernstein theorem being the cornerstone of the ongoing proofs. Analysis of exactly solvable examples and relevant mean-squared displacements enables us to classify diffusion processes described by such got solutions and to identify them with either ordinary or anomalous diffusion which character may change over time. To complete the present research we compare our results with those obtained using the continuous-time random-walk and the continuous-time persistent random-walk approaches.

4.
Phys Rev E ; 101(2-1): 022135, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32168676

ABSTRACT

Recent experimental findings on anomalous diffusion have demanded novel models that combine annealed (temporal) and quenched (spatial or static) disorder mechanisms. The comb model is a simplified description of diffusion on percolation clusters, where the comblike structure mimics quenched disorder mechanisms and yields a subdiffusive regime. Here we extend the comb model to simultaneously account for quenched and annealed disorder mechanisms. To do so, we replace usual derivatives in the comb diffusion equation by different fractional time-derivative operators and the conventional comblike structure by a generalized fractal structure. Our hybrid comb models thus represent a diffusion where different comblike structures describe different quenched disorder mechanisms, and the fractional operators account for various annealed disorder mechanisms. We find exact solutions for the diffusion propagator and mean square displacement in terms of different memory kernels used for defining the fractional operators. Among other findings, we show that these models describe crossovers from subdiffusion to Brownian or confined diffusions, situations emerging in empirical results. These results reveal the critical role of interactions between geometrical restrictions and memory effects on modeling anomalous diffusion.

5.
J Phys Chem B ; 123(37): 7885-7892, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31404488

ABSTRACT

We investigate possible connections between two different implementations of the Poisson-Nernst-Planck (PNP) anomalous models used to analyze the electrical response of electrolytic cells. One of them is built in the framework of the fractional calculus and considers integro-differential boundary conditions also formulated by using fractional derivatives; the other one is an extension of the standard PNP model presented by Barsoukov and Macdonald, which can also be related to equivalent circuits containing constant phase elements (CPEs). Both extensions may be related to an anomalous diffusion with subdiffusive characteristics through the electrical conductivity and are able to describe the experimental data presented here. Furthermore, we apply the Bayesian inversion method to extract the parameter of interest in the analytical formulas of impedance. To resolve the corresponding inverse problem, we use the delayed-rejection adaptive-Metropolis algorithm (DRAM) in the context of Markov-chain Monte Carlo (MCMC) algorithms to find the posterior distributions of the parameter and the corresponding confidence intervals.

SELECTION OF CITATIONS
SEARCH DETAIL
...